IDEAS home Printed from https://ideas.repec.org/p/ven/wpaper/201919.html
   My bibliography  Save this paper

Artificial Intelligence, Data, Ethics. An Holistic Approach for Risks and Regulation

Author

Listed:
  • Alexis Bogroff

    (University Paris 1 Panthéon-Sorbonne)

  • Dominique Guégan

    (University Paris 1 Panthéon-Sorbonne; labEx ReFi France; Ca' Foscari University of Venice)

Abstract

An extensive list of risks relative to big data frameworks and their use through models of artificial intelligence is provided along with measurements and implementable solutions. Bias, interpretability and ethics are studied in depth, with several interpretations from the point of view of developers, companies and regulators. Reflexions suggest that fragmented frameworks increase the risks of models misspecification, opacity and bias in the result. Domain experts and statisticians need to be involved in the whole process as the business objective must drive each decision from the data extraction step to the final activatable prediction. We propose an holistic and original approach to take into account the risks encountered all along the implementation of systems using artificial intelligence from the choice of the data and the selection of the algorithm, to the decision making.

Suggested Citation

  • Alexis Bogroff & Dominique Guégan, 2019. "Artificial Intelligence, Data, Ethics. An Holistic Approach for Risks and Regulation," Working Papers 2019: 19, Department of Economics, University of Venice "Ca' Foscari".
  • Handle: RePEc:ven:wpaper:2019:19
    as

    Download full text from publisher

    File URL: https://www.unive.it/web/fileadmin/user_upload/dipartimenti/DEC/doc/Pubblicazioni_scientifiche/working_papers/2019/WP_DSE_bogroff_guegan_19_19.pdf
    File Function: First version, anno
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep learning models," Working Papers 2018:08, Department of Economics, University of Venice "Ca' Foscari".
    2. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep Learning models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01719983, HAL.
    3. Renault, Thomas, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Journal of Banking & Finance, Elsevier, vol. 84(C), pages 25-40.
    4. Guanhao Feng & Jingyu He & Nicholas G. Polson, 2018. "Deep Learning for Predicting Asset Returns," Papers 1804.09314, arXiv.org, revised Apr 2018.
    5. Thomas Renault, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03205113, HAL.
    6. Emilio Calvano & Giacomo Calzolari & Vincenzo Denicolò & Sergio Pastorello, 2020. "Artificial Intelligence, Algorithmic Pricing, and Collusion," American Economic Review, American Economic Association, vol. 110(10), pages 3267-3297, October.
    7. Elyés Jouini & Moncef Meddeb & Nizar Touzi, 2004. "Vector-valued coherent risk measures," Finance and Stochastics, Springer, vol. 8(4), pages 531-552, November.
    8. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(1), pages 151-159, February.
    9. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(5), pages 687-698, October.
    10. Dominique Guegan & Peter Martey Addo & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01835164, HAL.
    11. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(3), pages 381-386, June.
    12. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(4), pages 525-537, August.
    13. Dominique Guegan & Peter Martey Addo & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Post-Print halshs-01835164, HAL.
    14. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(2), pages 285-292, April.
    15. J Banasik & J Crook, 2005. "Credit scoring, augmentation and lean models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(9), pages 1072-1081, September.
    16. Peter Martey Addo & Dominique Guégan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep learning models," Documents de travail du Centre d'Economie de la Sorbonne 18003, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    17. Timo Klein, 2018. "Autonomous Algorithmic Collusion: Q-Learning Under Sequantial Pricing," Tinbergen Institute Discussion Papers 18-056/VII, Tinbergen Institute, revised 01 Nov 2020.
    18. repec:dau:papers:123456789/353 is not listed on IDEAS
    19. Kevin A. Clarke, 2005. "The Phantom Menace: Omitted Variable Bias in Econometric Research," Conflict Management and Peace Science, Peace Science Society (International), vol. 22(4), pages 341-352, September.
    20. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean-David Fermanian & Dominique Guegan, 2021. "Fair learning with bagging," Post-Print halshs-03500906, HAL.
    2. Dominique Guegan, 2020. "A Note on the Interpretability of Machine Learning Algorithms," Post-Print halshs-02900929, HAL.
    3. Dominique Guégan, 2020. "A Note on the Interpretability of Machine Learning Algorithms," Working Papers 2020:20, Department of Economics, University of Venice "Ca' Foscari".
    4. Jean-David Fermanian & Dominique Guégan, 2021. "Fair learning with bagging," Documents de travail du Centre d'Economie de la Sorbonne 21034, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    5. Dominique Guegan, 2020. "A Note on the Interpretability of Machine Learning Algorithms," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02900929, HAL.
    6. Jean-David Fermanian & Dominique Guegan, 2021. "Fair learning with bagging," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-03500906, HAL.
    7. Dominique Guégan, 2020. "A Note on the Interpretability of Machine Learning Algorithms," Documents de travail du Centre d'Economie de la Sorbonne 20012, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexis Bogroff & Dominique Guegan, 2019. "Artificial Intelligence, Data, Ethics: An Holistic Approach for Risks and Regulation," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02181597, HAL.
    2. Alexis Bogroff & Dominique Guegan, 2019. "Artificial Intelligence, Data, Ethics: An Holistic Approach for Risks and Regulation," Post-Print halshs-02181597, HAL.
    3. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    4. Parisa Golbayani & Ionuc{t} Florescu & Rupak Chatterjee, 2020. "A comparative study of forecasting Corporate Credit Ratings using Neural Networks, Support Vector Machines, and Decision Trees," Papers 2007.06617, arXiv.org.
    5. Golbayani, Parisa & Florescu, Ionuţ & Chatterjee, Rupak, 2020. "A comparative study of forecasting corporate credit ratings using neural networks, support vector machines, and decision trees," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    6. Dan Wang & Zhi Chen & Ionut Florescu, 2021. "A Sparsity Algorithm with Applications to Corporate Credit Rating," Papers 2107.10306, arXiv.org.
    7. Roy Cerqueti & Francesca Pampurini & Annagiulia Pezzola & Anna Grazia Quaranta, 2022. "Dangerous liasons and hot customers for banks," Review of Quantitative Finance and Accounting, Springer, vol. 59(1), pages 65-89, July.
    8. Keerthana Sivamayil & Elakkiya Rajasekar & Belqasem Aljafari & Srete Nikolovski & Subramaniyaswamy Vairavasundaram & Indragandhi Vairavasundaram, 2023. "A Systematic Study on Reinforcement Learning Based Applications," Energies, MDPI, vol. 16(3), pages 1-23, February.
    9. Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
    10. Anastasios Petropoulos & Vasilis Siakoulis & Evaggelos Stavroulakis & Aristotelis Klamargias, 2019. "A robust machine learning approach for credit risk analysis of large loan level datasets using deep learning and extreme gradient boosting," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Are post-crisis statistical initiatives completed?, volume 49, Bank for International Settlements.
    11. Anastasios Petropoulos & Vasilis Siakoulis & Evaggelos Stavroulakis & Aristotelis Klamargias, 2019. "A robust machine learning approach for credit risk analysis of large loan-level datasets using deep learning and extreme gradient boosting," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The use of big data analytics and artificial intelligence in central banking, volume 50, Bank for International Settlements.
    12. Nenad Milojević & Srdjan Redzepagic, 2021. "Prospects of Artificial Intelligence and Machine Learning Application in Banking Risk Management," Journal of Central Banking Theory and Practice, Central bank of Montenegro, vol. 10(3), pages 41-57.
    13. Irving Fisher Committee, 2019. "The use of big data analytics and artificial intelligence in central banking," IFC Bulletins, Bank for International Settlements, number 50.
    14. Yaseen Ghulam & Kamini Dhruva & Sana Naseem & Sophie Hill, 2018. "The Interaction of Borrower and Loan Characteristics in Predicting Risks of Subprime Automobile Loans," Risks, MDPI, vol. 6(3), pages 1-21, September.
    15. Li-Chen Cheng & Wei-Ting Lu & Benjamin Yeo, 2023. "Predicting abnormal trading behavior from internet rumor propagation: a machine learning approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
    16. Roman P. Bulyga & Alexey A. Sitnov & Liudmila V. Kashirskaya & Irina V. Safonova, 2020. "Transparency of credit institutions," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 7(4), pages 3158-3172, June.
    17. Revathi Bhuvaneswari & Antonio Segalini, 2020. "Determining Secondary Attributes for Credit Evaluation in P2P Lending," Papers 2006.13921, arXiv.org.
    18. K. S. Naik, 2021. "Predicting Credit Risk for Unsecured Lending: A Machine Learning Approach," Papers 2110.02206, arXiv.org.
    19. Kolesnikova, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2019. "Can Deep Learning Predict Risky Retail Investors? A Case Study in Financial Risk Behavior Forecasting," IRTG 1792 Discussion Papers 2019-023, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    20. Xu Chen & Chunhong Liu & Changchun Gao & Yao Jiang, 2021. "Mechanism Underlying the Formation of Virtual Agglomeration of Creative Industries: Theoretical Analysis and Empirical Research," Sustainability, MDPI, vol. 13(4), pages 1-21, February.

    More about this item

    Keywords

    Artificial Intelligence; Bias; Big Data; Ethics; Governance; Interpretability; Regulation; Risk;
    All these keywords.

    JEL classification:

    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs
    • D8 - Microeconomics - - Information, Knowledge, and Uncertainty
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation
    • G38 - Financial Economics - - Corporate Finance and Governance - - - Government Policy and Regulation
    • K2 - Law and Economics - - Regulation and Business Law

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ven:wpaper:2019:19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sassano Sonia (email available below). General contact details of provider: https://edirc.repec.org/data/dsvenit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.