Adaptive Sequential Posterior Simulators for Massively Parallel Computing Environments
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
- Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
- Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
- Nicolas Chopin, 2002. "Central Limit Theorem for Sequential Monte Carlo Methods and its Applications to Bayesian Inference," Working Papers 2002-44, Center for Research in Economics and Statistics.
- Geweke, John & Amisano, Gianni, 2010.
"Comparing and evaluating Bayesian predictive distributions of asset returns,"
International Journal of Forecasting, Elsevier, vol. 26(2), pages 216-230, April.
- Amisano, Gianni & Geweke, John, 2008. "Comparing and evaluating Bayesian predictive distributions of assets returns," Working Paper Series 969, European Central Bank.
- Kloek, Tuen & van Dijk, Herman K, 1978.
"Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo,"
Econometrica, Econometric Society, vol. 46(1), pages 1-19, January.
- Kloek, T. & van Dijk, H. K., 1976. "BAYESIAN ESTIMATES OF EQUATION SYSTEM PARAMETERS An Application of Integration by Monte Carlo," Econometric Institute Archives 272139, Erasmus University Rotterdam.
- Fruhwirth-Schnatter S., 2001. "Markov Chain Monte Carlo Estimation of Classical and Dynamic Switching and Mixture Models," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 194-209, March.
- Nicolas Chopin & Pierre Jacob, 2010. "Free Energy Sequential Monte Carlo Application to Mixture Modelling," Working Papers 2010-34, Center for Research in Economics and Statistics.
- Nicolas Chopin, 2002.
"A sequential particle filter method for static models,"
Biometrika, Biometrika Trust, vol. 89(3), pages 539-552, August.
- Nicolas Chopin, 2000. "A Sequential Particle Filter Method for Static Models," Working Papers 2000-45, Center for Research in Economics and Statistics.
- Geweke, John, 2007. "Interpretation and inference in mixture models: Simple MCMC works," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3529-3550, April.
- Edward Herbst & Frank Schorfheide, 2014.
"Sequential Monte Carlo Sampling For Dsge Models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1073-1098, November.
- Edward P. Herbst & Frank Schorfheide, 2012. "Sequential Monte Carlo sampling for DSGE models," Working Papers 12-27, Federal Reserve Bank of Philadelphia.
- Edward P. Herbst & Frank Schorfheide, 2013. "Sequential Monte Carlo Sampling for DSGE Models," NBER Working Papers 19152, National Bureau of Economic Research, Inc.
- Edward P. Herbst & Frank Schorfheide, 2013. "Sequential Monte Carlo sampling for DSGE models," Finance and Economics Discussion Series 2013-43, Board of Governors of the Federal Reserve System (U.S.).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
- Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2013. "Historical Developments in Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 13-191/III, Tinbergen Institute.
- Tsionas, Mike G., 2023. "Bayesian learning in performance. Is there any?," European Journal of Operational Research, Elsevier, vol. 311(1), pages 263-282.
- Emmanuel Mamatzakis & Mike G. Tsionas, 2021. "Testing for persistence in US mutual funds’ performance: a Bayesian dynamic panel model," Annals of Operations Research, Springer, vol. 299(1), pages 1203-1233, April.
- Emmanuel Mamatzakis & Mike Tsionas, 2018. "A Bayesian dynamic model to test persistence in funds' performance," Working Paper series 18-23, Rimini Centre for Economic Analysis.
- Tsionas, Mike G., 2018. "A Bayesian approach to find Pareto optima in multiobjective programming problems using Sequential Monte Carlo algorithms," Omega, Elsevier, vol. 77(C), pages 73-79.
- Li, Yong & Zhang, Mingzhi & Zhang, Yonghui, 2022. "Sequential Bayesian bandwidth selection for multivariate kernel regression with applications," Economic Modelling, Elsevier, vol. 112(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hoogerheide, Lennart & Opschoor, Anne & van Dijk, Herman K., 2012.
"A class of adaptive importance sampling weighted EM algorithms for efficient and robust posterior and predictive simulation,"
Journal of Econometrics, Elsevier, vol. 171(2), pages 101-120.
- Lennart Hoogerheide & Anne Opschoor & Herman K. van Dijk, 2012. "A Class of Adaptive Importance Sampling Weighted EM Algorithms for Efficient and Robust Posterior and Predictive Simulation," Tinbergen Institute Discussion Papers 12-026/4, Tinbergen Institute.
- Markku Lanne & Jani Luoto, 2015. "Estimation of DSGE Models under Diffuse Priors and Data-Driven Identification Constraints," CREATES Research Papers 2015-37, Department of Economics and Business Economics, Aarhus University.
- Ardia, David & Hoogerheide, Lennart F., 2010.
"Efficient Bayesian estimation and combination of GARCH-type models,"
MPRA Paper
22919, University Library of Munich, Germany.
- David Ardia & Lennart F. Hoogerheide, 2010. "Efficient Bayesian Estimation and Combination of GARCH-Type Models," Tinbergen Institute Discussion Papers 10-046/4, Tinbergen Institute.
- Yin, Ming, 2015. "Estimating Gaussian Mixture Autoregressive model with Sequential Monte Carlo algorithm: A parallel GPU implementation," MPRA Paper 88111, University Library of Munich, Germany, revised 2018.
- Lennart Hoogerheide & Anne Opschoor & Herman K. van Dijk, 2011. "A Class of Adaptive EM-based Importance Sampling Algorithms for Efficient and Robust Posterior and Predictive Simulation," Tinbergen Institute Discussion Papers 11-004/4, Tinbergen Institute.
- Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2019. "Density Forecasting," BEMPS - Bozen Economics & Management Paper Series BEMPS59, Faculty of Economics and Management at the Free University of Bozen.
- David Ardia, 2009.
"Bayesian estimation of a Markov-switching threshold asymmetric GARCH model with Student-t innovations,"
Econometrics Journal, Royal Economic Society, vol. 12(1), pages 105-126, March.
- Ardia, David, 2007. "Bayesian Estimation of a Markov-Switching Threshold Asymmetric GARCH Model with Student-t Innovations," DQE Working Papers 6, Department of Quantitative Economics, University of Freiburg/Fribourg Switzerland, revised 08 Jul 2008.
- Arnaud Dufays, 2016.
"Evolutionary Sequential Monte Carlo Samplers for Change-Point Models,"
Econometrics, MDPI, vol. 4(1), pages 1-33, March.
- Arnaud Dufays, 2015. "Evolutionary Sequential Monte Carlo Samplers for Change-point Models," Cahiers de recherche 1518, CIRPEE.
- Arnaud Dufays, 2015. "Evolutionary Sequential Monte Carlo Samplers for Change-point Models," Cahiers de recherche 1508, Centre de recherche sur les risques, les enjeux économiques, et les politiques publiques.
- Borowska, Agnieszka & Hoogerheide, Lennart & Koopman, Siem Jan & van Dijk, Herman K., 2020.
"Partially censored posterior for robust and efficient risk evaluation,"
Journal of Econometrics, Elsevier, vol. 217(2), pages 335-355.
- Agnieszka Borowska & Lennart Hoogerheide & Siem Jan Koopman & Herman K. van Dijk, 2019. "Partially Censored Posterior for robust and efficient risk evaluation," Working Paper 2019/12, Norges Bank.
- Agnieszka Borowska & Lennart Hoogerheide & Siem Jan Koopman & Herman van Dijk, 2019. "Partially Censored Posterior for Robust and Efficient Risk Evaluation," Tinbergen Institute Discussion Papers 19-057/III, Tinbergen Institute.
- Luc Bauwens & Jean-François Carpantier & Arnaud Dufays, 2017.
"Autoregressive Moving Average Infinite Hidden Markov-Switching Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 162-182, April.
- Bauwens, Luc & Carpantier, Jean-François & Dufays, Arnaud, 2015. "Autoregressive moving average infinite hidden markov-switching models," LIDAM Discussion Papers CORE 2015007, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc Bauwens & Jean-François Carpantier & Arnaud Dufays, 2017. "Autoregressive Moving Average Infinite Hidden Markov-Switching Models," Post-Print hal-01795051, HAL.
- Luc BAUWENS & Jean-François CARPENTIER & Arnaud DUFAYS, 2017. "Autoregressive moving average infinite hidden Markov-switching models," LIDAM Reprints CORE 2836, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Li, Mingliang & Mumford, Kevin J. & Tobias, Justin L., 2012. "A Bayesian analysis of payday loans and their regulation," Journal of Econometrics, Elsevier, vol. 171(2), pages 205-216.
- Geweke, John & Durham, Garland, 2019. "Sequentially adaptive Bayesian learning algorithms for inference and optimization," Journal of Econometrics, Elsevier, vol. 210(1), pages 4-25.
- Rombouts, Jeroen V.K. & Stentoft, Lars, 2014.
"Bayesian option pricing using mixed normal heteroskedasticity models,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 588-605.
- Jeroen V.K. Rombouts & Lars Stentoft, 2009. "Bayesian Option Pricing Using Mixed Normal Heteroskedasticity Models," CREATES Research Papers 2009-07, Department of Economics and Business Economics, Aarhus University.
- ROMBOUTS, Jeroen V.K. & STENTOFT, Lars, 2009. "Bayesian option pricing using mixed normal heteroskedasticity models," LIDAM Discussion Papers CORE 2009013, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Jeroen Rombouts & Lars Stentoft, 2009. "Bayesian Option Pricing Using Mixed Normal Heteroskedasticity Models," CIRANO Working Papers 2009s-19, CIRANO.
- Jeroen V.K. Rombouts & Lars Stentoft, 2009. "Bayesian Option Pricing Using Mixed Normal Heteroskedasticity Models," Cahiers de recherche 0926, CIRPEE.
- Ardia, David & Hoogerheide, Lennart F. & van Dijk, Herman K., 2009.
"Adaptive Mixture of Student-t Distributions as a Flexible Candidate Distribution for Efficient Simulation: The R Package AdMit,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 29(i03).
- David Ardia & Lennart F. Hoogerheide & Herman K. van Dijk, 2008. "Adaptive Mixture of Student-t distributions as a Flexible Candidate Distribution for Efficient Simulation: the R Package AdMit," Tinbergen Institute Discussion Papers 08-062/4, Tinbergen Institute, revised 15 Dec 2008.
- Çakmaklı, Cem & Paap, Richard & van Dijk, Dick, 2013.
"Measuring and predicting heterogeneous recessions,"
Journal of Economic Dynamics and Control, Elsevier, vol. 37(11), pages 2195-2216.
- Cem Cakmakli & Richard Paap & Dick van Dijk, 2011. "Measuring and Predicting Heterogeneous Recessions," Tinbergen Institute Discussion Papers 11-154/4, Tinbergen Institute, revised 15 Nov 2011.
- Cem Cakmakli & Richard Paap & Dick van Dijk, 2012. "Measuring and Predicting Heterogeneous Recessions," Koç University-TUSIAD Economic Research Forum Working Papers 1206, Koc University-TUSIAD Economic Research Forum.
- Deschamps, Philippe J., 2012.
"Bayesian estimation of generalized hyperbolic skewed student GARCH models,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3035-3054.
- Deschamps, Philippe J., 2011. "Bayesian Estimation of Generalized Hyperbolic Skewed Student GARCH Models," DQE Working Papers 16, Department of Quantitative Economics, University of Freiburg/Fribourg Switzerland, revised 09 Jun 2012.
- Mark Bognanni & Edward P. Herbst, 2014.
"Estimating (Markov-Switching) VAR Models without Gibbs Sampling: A Sequential Monte Carlo Approach,"
Working Papers (Old Series)
1427, Federal Reserve Bank of Cleveland.
- Mark Bognanni & Edward P. Herbst, 2015. "Estimating (Markov-Switching) VAR Models without Gibbs Sampling: A Sequential Monte Carlo Approach," Finance and Economics Discussion Series 2015-116, Board of Governors of the Federal Reserve System (U.S.).
- Ardia, David & Hoogerheide, Lennart F. & van Dijk, Herman K., 2009.
"Adaptive Mixture of Student-t Distributions as a Flexible Candidate Distribution for Efficient Simulation: The R Package AdMit,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 29(i03).
- David Ardia & Lennart F. Hoogerheide & Herman K. van Dijk, 2008. "Adaptive Mixture of Student-t distributions as a Flexible Candidate Distribution for Efficient Simulation: the R Package AdMit," Tinbergen Institute Discussion Papers 08-062/4, Tinbergen Institute, revised 15 Dec 2008.
- Ardia, David & Hoogerheide, Lennart F. & van Dijk, Herman K., 2008. "Adaptive mixture of Student-t distributions as a flexible candidate distribution for efficient simulation: the R package AdMit," DQE Working Papers 9, Department of Quantitative Economics, University of Freiburg/Fribourg Switzerland, revised 07 Jan 2009.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
More about this item
Keywords
Graphics processing unit; particle filter; posterior simulation; sequential Monte Carlo; single instruction multiple data;All these keywords.
JEL classification:
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2013-04-20 (Computational Economics)
- NEP-ECM-2013-04-20 (Econometrics)
- NEP-ORE-2013-04-20 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:ecowps:9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/edutsau.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.