IDEAS home Printed from https://ideas.repec.org/p/upf/upfgen/740.html
   My bibliography  Save this paper

A generalization of Hull and White formula and applications to option pricing approximation

Author

Abstract

By means of Malliavin Calculus we see that the classical Hull and White formula for option pricing can be extended to the case where the noise driving the volatility process is correlated with the noise driving the stock prices. This extension will allow us to construct option pricing approximation formulas. Numerical examples are presented.

Suggested Citation

  • Elisa Alòs, 2004. "A generalization of Hull and White formula and applications to option pricing approximation," Economics Working Papers 740, Department of Economics and Business, Universitat Pompeu Fabra.
  • Handle: RePEc:upf:upfgen:740
    as

    Download full text from publisher

    File URL: https://econ-papers.upf.edu/papers/740.pdf
    File Function: Whole Paper
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    2. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    3. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    4. Ball, Clifford A. & Roma, Antonio, 1994. "Stochastic Volatility Option Pricing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 29(4), pages 589-607, December.
    5. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    6. Elisa Alòs, 2003. "A general decomposition formula for derivative prices in stochastic volatility models," Economics Working Papers 665, Department of Economics and Business, Universitat Pompeu Fabra.
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.
    2. Yijuan Liang & Xiuchuan Xu, 2019. "Variance and Dimension Reduction Monte Carlo Method for Pricing European Multi-Asset Options with Stochastic Volatilities," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
    3. Jondeau, E. & Rockinger, M., 1998. "Reading the Smile: The Message Conveyed by Methods Which Infer Risk Neutral," Working papers 47, Banque de France.
    4. Robert F. Engle & Joshua V. Rosenberg, 1995. "GARCH Gamma," NBER Working Papers 5128, National Bureau of Economic Research, Inc.
    5. Lin, Y.-T. & Shih, Y.-T. & Chien, C.-S. & Sheng, Q., 2021. "A note on stochastic polynomial chaos expansions for uncertain volatility and Asian option pricing," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    6. Tan, Abby, 2006. "Long-memory volatility in derivative hedging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 689-696.
    7. Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
    8. Stoyan V. Stoyanov & Yong Shin Kim & Svetlozar T. Rachev & Frank J. Fabozzi, 2017. "Option pricing for Informed Traders," Papers 1711.09445, arXiv.org.
    9. Elisa Alòs, 2003. "A general decomposition formula for derivative prices in stochastic volatility models," Economics Working Papers 665, Department of Economics and Business, Universitat Pompeu Fabra.
    10. Zhu, Ke & Ling, Shiqing, 2015. "Model-based pricing for financial derivatives," Journal of Econometrics, Elsevier, vol. 187(2), pages 447-457.
    11. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    12. Matthias Fengler & Wolfgang Härdle & Enno Mammen, 2005. "A Dynamic Semiparametric Factor Model for Implied Volatility String Dynamics," SFB 649 Discussion Papers SFB649DP2005-020, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    13. El-Khatib, Youssef & Goutte, Stephane & Makumbe, Zororo S. & Vives, Josep, 2023. "A hybrid stochastic volatility model in a Lévy market," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 220-235.
    14. Falko Baustian & Martin Fencl & Jan Posp'iv{s}il & Vladim'ir v{S}v'igler, 2021. "A note on a PDE approach to option pricing under xVA," Papers 2105.00051, arXiv.org, revised Jul 2021.
    15. Stentoft, Lars, 2011. "American option pricing with discrete and continuous time models: An empirical comparison," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 880-902.
    16. Christian Gourieroux & Razvan Sufana, 2004. "Derivative Pricing with Multivariate Stochastic Volatility : Application to Credit Risk," Working Papers 2004-31, Center for Research in Economics and Statistics.
    17. Liu, Chang & Chang, Chuo, 2021. "Combination of transition probability distribution and stable Lorentz distribution in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    18. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    19. Sudarshan Kumar & Sobhesh Kumar Agarwalla & Jayanth R. Varma & Vineet Virmani, 2023. "Harvesting the volatility smile in a large emerging market: A Dynamic Nelson–Siegel approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(11), pages 1615-1644, November.
    20. Damien Ackerer & Damir Filipović, 2020. "Option pricing with orthogonal polynomial expansions," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 47-84, January.

    More about this item

    Keywords

    Continuous-time option pricing model; stochastic volatility; Malliavin calculus;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:upf:upfgen:740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.upf.edu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.