IDEAS home Printed from https://ideas.repec.org/p/upf/upfgen/1029.html
   My bibliography  Save this paper

Measuring time-varying economic fears with consumption-based stochastic discount factors

Author

Listed:
  • Belén Nieto
  • Gonzalo Rubio

Abstract

This paper analyzes empirically the volatility of consumption-based stochastic discount factors as a measure of implicit economic fears by studying its relationship with future economic and stock market cycles. Time-varying economic fears seem to be well captured by the volatility of stochastic discount factors. In particular, the volatility of recursive utility-based stochastic discount factor with contemporaneous growth explains between 9 and 34 percent of future changes in industrial production at short and long horizons respectively. They also explain ex-ante uncertainty and risk aversion. However, future stock market cycles are better explained by a similar stochastic discount factor with long-run consumption growth. This specification of the stochastic discount factor presents higher volatility and lower pricing errors than the specification with contemporaneous consumption growth.

Suggested Citation

  • Belén Nieto & Gonzalo Rubio, 2007. "Measuring time-varying economic fears with consumption-based stochastic discount factors," Economics Working Papers 1029, Department of Economics and Business, Universitat Pompeu Fabra, revised Sep 2007.
  • Handle: RePEc:upf:upfgen:1029
    as

    Download full text from publisher

    File URL: https://econ-papers.upf.edu/papers/1029.pdf
    File Function: Whole Paper
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amihud, Yakov & Hurvich, Clifford M., 2004. "Predictive Regressions: A Reduced-Bias Estimation Method," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(4), pages 813-841, December.
    2. Francisco Alonso & Roberto Blanco & Gonzalo Rubio, 2009. "Option-implied preferences adjustments, density forecasts, and the equity risk premium," Spanish Economic Review, Springer;Spanish Economic Association, vol. 11(2), pages 141-164, June.
    3. Hansen, Lars Peter & Jagannathan, Ravi, 1991. "Implications of Security Market Data for Models of Dynamic Economies," Journal of Political Economy, University of Chicago Press, vol. 99(2), pages 225-262, April.
    4. Xiaohong Chen & Sydney C. Ludvigson, 2009. "Land of addicts? an empirical investigation of habit‐based asset pricing models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1057-1093, November.
    5. Shackleton, Mark B. & Taylor, Stephen J. & Yu, Peng, 2010. "A multi-horizon comparison of density forecasts for the S&P 500 using index returns and option prices," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2678-2693, November.
    6. John Y. Campbell & John Cochrane, 1999. "Force of Habit: A Consumption-Based Explanation of Aggregate Stock Market Behavior," Journal of Political Economy, University of Chicago Press, vol. 107(2), pages 205-251, April.
    7. Campbell, John Y, 1996. "Understanding Risk and Return," Journal of Political Economy, University of Chicago Press, vol. 104(2), pages 298-345, April.
    8. Jonathan A. Parker & Christian Julliard, 2005. "Consumption Risk and the Cross Section of Expected Returns," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 185-222, February.
    9. Bakshi, Gurdip & Chen, Zhiwu & Hjalmarsson, Erik, 2005. "Volatility of the Stochastic Discount Factor, and the Distinction between Risk-Neutral and Objective Probability Measures," Working Papers in Economics 159, University of Gothenburg, Department of Economics.
    10. Li, Yuming, 2001. "Expected Returns and Habit Persistence," The Review of Financial Studies, Society for Financial Studies, vol. 14(3), pages 861-899.
    11. Keller, Joachim & Glatzer, Ernst & Craig, Ben R. & Scheicher, Martin, 2003. "The Forecasting Performance of German Stock Option Densities," Discussion Paper Series 1: Economic Studies 2003,17, Deutsche Bundesbank.
    12. Lewellen, Jonathan, 2004. "Predicting returns with financial ratios," Journal of Financial Economics, Elsevier, vol. 74(2), pages 209-235, November.
    13. Xiaohong Chen & Sydney C. Ludvigson, 2004. "Land of Addicts? An Empirical Investigation of Habit-Based Asset Pricing Behavior," NBER Working Papers 10503, National Bureau of Economic Research, Inc.
    14. Stambaugh, Robert F., 1999. "Predictive regressions," Journal of Financial Economics, Elsevier, vol. 54(3), pages 375-421, December.
    15. Alessandro Beber & Michael W. Brandt, 2009. "Resolving Macroeconomic Uncertainty in Stock and Bond Markets," Review of Finance, European Finance Association, vol. 13(1), pages 1-45.
    16. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    17. Kang, Byung Jin & Kim, Tong Suk, 2006. "Option-implied risk preferences: An extension to wider classes of utility functions," Journal of Financial Markets, Elsevier, vol. 9(2), pages 180-198, May.
    18. Motohiro Yogo, 2006. "A Consumption‐Based Explanation of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 61(2), pages 539-580, April.
    19. repec:bla:jfinan:v:59:y:2004:i:1:p:407-446 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nieto, Belén & Rubio, Gonzalo, 2011. "The volatility of consumption-based stochastic discount factors and economic cycles," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2197-2216, September.
    2. Ludvigson, Sydney C., 2013. "Advances in Consumption-Based Asset Pricing: Empirical Tests," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 799-906, Elsevier.
    3. Cochrane, John H., 2005. "Financial Markets and the Real Economy," Foundations and Trends(R) in Finance, now publishers, vol. 1(1), pages 1-101, July.
    4. Francisco Alonso & Roberto Blanco & Gonzalo Rubio, 2009. "Option-implied preferences adjustments, density forecasts, and the equity risk premium," Spanish Economic Review, Springer;Spanish Economic Association, vol. 11(2), pages 141-164, June.
    5. Roussanov, Nikolai, 2014. "Composition of wealth, conditioning information, and the cross-section of stock returns," Journal of Financial Economics, Elsevier, vol. 111(2), pages 352-380.
    6. Møller, Stig Vinther, 2009. "Habit persistence: Explaining cross-sectional variation in returns and time-varying expected returns," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 525-536, September.
    7. Roelof Salomons, 2008. "A Theoretical And Practical Perspective On The Equity Risk Premium," Journal of Economic Surveys, Wiley Blackwell, vol. 22(2), pages 299-329, April.
    8. Engsted, Tom & Hyde, Stuart & Møller, Stig V., 2010. "Habit formation, surplus consumption and return predictability: International evidence," Journal of International Money and Finance, Elsevier, vol. 29(7), pages 1237-1255, November.
    9. Auer, Benjamin R., 2013. "Can habit formation under complete market integration explain the cross-section of international equity risk premia?," Review of Financial Economics, Elsevier, vol. 22(2), pages 61-67.
    10. Schrimpf, Andreas, 2010. "International stock return predictability under model uncertainty," Journal of International Money and Finance, Elsevier, vol. 29(7), pages 1256-1282, November.
    11. Auer Benjamin R., 2012. "Lassen sich CAPM, HCAPM und CCAPM durch konsumbasierte zeitvariable Parameterspezifikation rehabilitieren? / Can Time-varying Parameter Specification Based on Consumption Variables Rehabilitate CAPM, ," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 232(5), pages 518-544, October.
    12. John Y. Campbell, 2008. "Viewpoint: Estimating the equity premium," Canadian Journal of Economics, Canadian Economics Association, vol. 41(1), pages 1-21, February.
    13. Ricardo Crisóstomo, 2021. "Estimating real‐world probabilities: A forward‐looking behavioral framework," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(11), pages 1797-1823, November.
    14. Sydney Ludvigson, 2008. "The Research Agenda: Sydney Ludvigson on Empirical Evaluation of Economic Theories of Risk Premia," EconomicDynamics Newsletter, Review of Economic Dynamics, vol. 9(2), April.
    15. repec:grz:wpaper:2012-02 is not listed on IDEAS
    16. Anisha Ghosh & Christian Julliard & Alex P. Taylor, 2017. "What Is the Consumption-CAPM Missing? An Information-Theoretic Framework for the Analysis of Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 30(2), pages 442-504.
    17. Demetrescu, Matei & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023. "Transformed regression-based long-horizon predictability tests," Journal of Econometrics, Elsevier, vol. 237(2).
    18. Xiaohong Chen & Sydney C. Ludvigson, 2009. "Land of addicts? an empirical investigation of habit-based asset pricing models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1057-1093.
    19. Demetrescu, Matei & Rodrigues, Paulo M.M., 2022. "Residual-augmented IVX predictive regression," Journal of Econometrics, Elsevier, vol. 227(2), pages 429-460.
    20. Xiaoquan Jiang & Bong‐Soo Lee, 2006. "The Dynamic Relation Between Returns and Idiosyncratic Volatility," Financial Management, Financial Management Association International, vol. 35(2), pages 43-65, June.
    21. João M. Sousa & Ricardo M. Sousa, 2019. "Asset Returns Under Model Uncertainty: Evidence from the Euro Area, the US and the UK," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 139-176, June.

    More about this item

    Keywords

    Stochastic discount factor; economic fears; distance between probability measures; volatility of stochastic discount factor; consumption;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:upf:upfgen:1029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.upf.edu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.