IDEAS home Printed from https://ideas.repec.org/p/unp/wpaman/201004.html
   My bibliography  Save this paper

Volatility Model for Financial Market Risk Management : An Analysis on JSX Index Return Covariance Matrix

Author

Listed:
  • Erie Febrian

    (Finance & Risk Management Study Group (FRMSG) FE UNPAD)

  • Aldrin Herwany

    (Research Division, Laboratory of Management FE UNPAD)

Abstract

In measuring risk, practitioners have practiced one of the two extreme approaches for so long, i.e. historical simulation or risk metrics. Meanwhile, academicians tend to apply methods based on the latest development in financial econometrics. In this study, we try to assess one of important issues in financial econometric development that focuses on market risk measurement and management employing asset-based models, i.e. models that apply dimensional covariance matrix, which is relevant to practice world. We compare covariance matrix model with Exponential Smoothing Model and GARCH Derivation and the Associated Derivation Models, using JSX Stock price Index data in 2000-2005. The result of this study shows how applicable the observed financial econometric instrument in Financial Market Risk Management practice.

Suggested Citation

  • Erie Febrian & Aldrin Herwany, 2010. "Volatility Model for Financial Market Risk Management : An Analysis on JSX Index Return Covariance Matrix," Working Papers in Business, Management and Finance 201004, Department of Management and Business, Padjadjaran University, revised Apr 2010.
  • Handle: RePEc:unp:wpaman:201004
    as

    Download full text from publisher

    File URL: http://lp3e.fe.unpad.ac.id/wpaman/201004.pdf
    File Function: First version, 2010
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. Aggarwal, Reena & Inclan, Carla & Leal, Ricardo, 1999. "Volatility in Emerging Stock Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(1), pages 33-55, March.
    3. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erie Febrian & Aldrin Herwany, 2009. "Volatility Forecasting Models and Market Co-Integration: A Study on South-East Asian Markets," Working Papers in Economics and Development Studies (WoPEDS) 200911, Department of Economics, Padjadjaran University, revised Sep 2009.
    2. Erie Febrian & Aldrin Herwany, 2009. "Forecasting Stocks of Government Owned Companies (GOCS):Volatility Modeling," Working Papers in Economics and Development Studies (WoPEDS) 200908, Department of Economics, Padjadjaran University, revised Sep 2009.
    3. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    4. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    5. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    6. Dimitrakopoulos, Dimitris N. & Kavussanos, Manolis G. & Spyrou, Spyros I., 2010. "Value at risk models for volatile emerging markets equity portfolios," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(4), pages 515-526, November.
    7. Altaf Muhammad & Zhang Shuguang, 2015. "Impact Of Structural Shifts on Variance Persistence in Asymmetric Garch Models: Evidence From Emerging Asian and European Markets," Romanian Statistical Review, Romanian Statistical Review, vol. 63(1), pages 57-70, March.
    8. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    9. Chao Wang & Richard Gerlach, 2021. "A Bayesian realized threshold measurement GARCH framework for financial tail risk forecasting," Papers 2106.00288, arXiv.org, revised Oct 2022.
    10. Amira, Khaled & Taamouti, Abderrahim & Tsafack, Georges, 2011. "What drives international equity correlations? Volatility or market direction?," Journal of International Money and Finance, Elsevier, vol. 30(6), pages 1234-1263, October.
    11. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    12. Ezzat, Hassan, 2012. "The Application of GARCH and EGARCH in Modeling the Volatility of Daily Stock Returns During Massive Shocks: The Empirical Case of Egypt," MPRA Paper 50530, University Library of Munich, Germany.
    13. Chin-Tsai Lin & Yi-Hsien Wang, 2005. "An Analysis of Political Changes on Nikkei 225 Stock Returns and Volatilities," Annals of Economics and Finance, Society for AEF, vol. 6(1), pages 169-183, May.
    14. Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    15. Bee, Marco & Dupuis, Debbie J. & Trapin, Luca, 2016. "Realizing the extremes: Estimation of tail-risk measures from a high-frequency perspective," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 86-99.
    16. Norma A. Hernández Perales & Russell Robins, 2002. "An Application Of Arch And Arch-M Models To Study Inflation In Mexico From 1978 To 1999," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 1(3), pages 169-186, Septiembr.
    17. Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020. "Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
    18. Jose Luis Miralles Marcelo & Jose Luis Miralles Quiros & Maria del Mar Miralles Quiros, 2007. "Sudden shifts in variance in the Spanish market: persistence and spillover effects," Applied Financial Economics, Taylor & Francis Journals, vol. 18(2), pages 115-124.
    19. Christian Bontemps & Nour Meddahi, 2012. "Testing distributional assumptions: A GMM aproach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 978-1012, September.
    20. Degiannakis, Stavros & Xekalaki, Evdokia, 2007. "Assessing the Performance of a Prediction Error Criterion Model Selection Algorithm in the Context of ARCH Models," MPRA Paper 96324, University Library of Munich, Germany.

    More about this item

    Keywords

    Risk Management; Volatility Model;

    JEL classification:

    • G0 - Financial Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:unp:wpaman:201004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Aldrin Herwany (email available below). General contact details of provider: https://edirc.repec.org/data/dmpadid.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.