IDEAS home Printed from https://ideas.repec.org/p/unm/umamet/2000026.html
   My bibliography  Save this paper

Cooperative games in graph structure

Author

Listed:
  • Herings, P.J.J.

    (Microeconomics & Public Economics)

  • van der Laan, G.

    (Externe publicaties SBE)

  • Talman, A.J.J.

    (Externe publicaties SBE)

Abstract

In this paper we generalize the concept of coalitional games by allowingfor any organizational structure within coalitions represented by a graphon the set of players ot the coalition. A, possibly empty, set of payoffvectors is assigned to any graph on every subset of players. Such a gamewill be called a graph game. For each graph a power vector is determinedthat depends on the relative positions of the players within the graph.A collection of graphs will be called balanced if to any graph in the collection apositive weight can be assigned such that the weighted power vectorssum up to the vector of ones. We then define the balanced-core as a refinement ofthe core. A payoff vector lies in the balanced-core if it lies in the core andthe payoff vector is an element of payoff sets of all graphs in some balanced collection ofgraphs. We prove that any balanced graph game has a nonempty balanced-core.We conclude by some examples showing the usefulness of the conceptsof graph games and balanced-core. In particular these examples show a closerelationship between solutions to noncooperative games andbalanced-core elements of a well-defined graph game.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Herings, P.J.J. & van der Laan, G. & Talman, A.J.J., 2000. "Cooperative games in graph structure," Research Memorandum 026, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  • Handle: RePEc:unm:umamet:2000026
    DOI: 10.26481/umamet.2000026
    as

    Download full text from publisher

    File URL: https://cris.maastrichtuniversity.nl/ws/files/1074510/guid-e38544a0-0335-4774-9723-bd10b3dc012d-ASSET1.0.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.26481/umamet.2000026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. van der Laan, G. & Talman, A.J.J. & Yang, Z., 1994. "Intersection theorems on polytopes," Other publications TiSEM b1440966-d5e0-44ab-9b1c-f, Tilburg University, School of Economics and Management.
    2. Nash, John, 1953. "Two-Person Cooperative Games," Econometrica, Econometric Society, vol. 21(1), pages 128-140, April.
    3. P. Jean-Jacques Herings, 1997. "An extremely simple proof of the K-K-M-S Theorem," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 10(2), pages 361-367.
    4. Kamiya, K. & Talman, D., 1990. "Variable Dimension Simplicial Algorithm For Balanced Games," Papers 9025, Tilburg - Center for Economic Research.
    5. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    6. Doup, T.M. & Talman, A.J.J., 1987. "A new simplicial variable dimension algorithm to find equilibria on the product space of unit simplices," Other publications TiSEM 398740e7-fdc2-41b6-968f-4, Tilburg University, School of Economics and Management.
    7. Gerard van der Laan & Zaifu Yang & Dolf Talman, 1998. "Cooperative games in permutational structure," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 11(2), pages 427-442.
    8. Nowak Andrzej S. & Radzik Tadeusz, 1994. "The Shapley Value for n-Person Games in Generalized Characteristic Function Form," Games and Economic Behavior, Elsevier, vol. 6(1), pages 150-161, January.
    9. Jean Tirole, 1988. "The Theory of Industrial Organization," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262200716, December.
    10. Bouyssou, Denis, 1992. "Ranking methods based on valued preference relations: A characterization of the net flow method," European Journal of Operational Research, Elsevier, vol. 60(1), pages 61-67, July.
    11. Ichiishi, Tatsuro & Idzik, Adam, 1991. "Closed Covers of Compact Convex Polyhedra," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(2), pages 161-169.
    12. D. Bouyssou & P. Perny, 1992. "Ranking methods for valued preference relations," Post-Print hal-02920156, HAL.
    13. Bouyssou, D. & Perny, P., 1992. "Ranking methods for valued preference relations : A characterization of a method based on leaving and entering flows," European Journal of Operational Research, Elsevier, vol. 61(1-2), pages 186-194, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. P. Jean-Jacques Herings & Gerard van der Laan & Dolf Talman, 2001. "Measuring the Power of Nodes in Digraphs," Tinbergen Institute Discussion Papers 01-096/1, Tinbergen Institute.
    2. Predtetchinski, Arkadi & Jean-Jacques Herings, P., 2004. "A necessary and sufficient condition for non-emptiness of the core of a non-transferable utility game," Journal of Economic Theory, Elsevier, vol. 116(1), pages 84-92, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Herings & A. Predtetchinski & A. Perea, 2006. "The Weak Sequential Core for Two-Period Economies," International Journal of Game Theory, Springer;Game Theory Society, vol. 34(1), pages 55-65, April.
    2. Herings, P.J.J. & van der Laan, G. & Talman, A.J.J., 2003. "Socially Structured Games and their Applications," Other publications TiSEM 271c701e-4489-41b3-8d9e-f, Tilburg University, School of Economics and Management.
    3. Clemens J. M. Kool, 2000. "International bond markets and the introduction of the Euro," Review, Federal Reserve Bank of St. Louis, vol. 82(Sep), pages 41-56.
    4. P. Herings & Gerard Laan & Dolf Talman, 2007. "Socially Structured Games," Theory and Decision, Springer, vol. 62(1), pages 1-29, February.
    5. Gerard van der Laan & Zaifu Yang & Dolf Talman, 1998. "Cooperative games in permutational structure," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 11(2), pages 427-442.
    6. van den Brink, René & Rusinowska, Agnieszka, 2022. "The degree measure as utility function over positions in graphs and digraphs," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1033-1044.
    7. René van den Brink & Agnieszka Rusinowska, 2017. "The degree measure as utility function over positions in networks," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01592181, HAL.
    8. Rene van den Brink & Agnieszka Rusinowska, "undated". "The Degree Ratio Ranking Method for Directed Networks," Tinbergen Institute Discussion Papers 19-026/II, Tinbergen Institute.
    9. van den Brink, René & Gilles, Robert P., 2009. "The outflow ranking method for weighted directed graphs," European Journal of Operational Research, Elsevier, vol. 193(2), pages 484-491, March.
    10. Brink, René van den & Rusinowska, Agnieszka, 2021. "The degree ratio ranking method for directed graphs," European Journal of Operational Research, Elsevier, vol. 288(2), pages 563-575.
    11. László Csató, 2019. "An impossibility theorem for paired comparisons," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 497-514, June.
    12. Walter Bossert & Kotaro Suzumura, 2020. "Positionalist voting rules: a general definition and axiomatic characterizations," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 55(1), pages 85-116, June.
    13. G Özerol & E Karasakal, 2008. "Interactive outranking approaches for multicriteria decision-making problems with imprecise information," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1253-1268, September.
    14. Chen, Xuqi & Gao, Zhifeng & House, Lisa, 2015. "Willingness to Pay for Niche Fresh Produce across the States: Why Are Consumers Willing to Pay More for the Less Favorite?," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196901, Southern Agricultural Economics Association.
    15. Herings, P.J.J. & van der Laan, G. & Talman, A.J.J., 2001. "Measuring the Power of Nodes in Digraphs," Discussion Paper 2001-72, Tilburg University, Center for Economic Research.
    16. Alexandru-Liviu Olteanu & Khaled Belahcene & Vincent Mousseau & Wassila Ouerdane & Antoine Rolland & Jun Zheng, 2022. "Preference elicitation for a ranking method based on multiple reference profiles," 4OR, Springer, vol. 20(1), pages 63-84, March.
    17. Zhiwei Cui & Yan-An Hwang & Ding-Cheng You, 2021. "Axiomatizations of the $$\beta $$ β and the score measures in networks," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(2), pages 399-418, June.
    18. Philippe Vincke, 1994. "Recent progresses in Multicriteria Decision-Aid," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 17(2), pages 21-32, September.
    19. Csató, László, 2013. "Rangsorolás páros összehasonlításokkal. Kiegészítések a felvételizői preferencia-sorrendek módszertanához [Paired comparisons ranking. A supplement to the methodology of application-based preferenc," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(12), pages 1333-1353.
    20. Vincke, Ph., 1999. "Robust and neutral methods for aggregating preferences into an outranking relation," European Journal of Operational Research, Elsevier, vol. 112(2), pages 405-412, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:unm:umamet:2000026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Andrea Willems or Leonne Portz (email available below). General contact details of provider: https://edirc.repec.org/data/meteonl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.