IDEAS home Printed from https://ideas.repec.org/p/unm/umagsb/2014007.html
   My bibliography  Save this paper

CCE estimation of factor-augmented regression models with more factors than observables

Author

Listed:
  • Karabiyik, H.

    (Quantitative Economics)

  • Urbain, J.R.Y.J.

    (Quantitative Economics)

  • Westerlund, J.

    (Externe publicaties SBE)

Abstract

This paper considers estimation of factor-augmented panel data regression models with homogenous slope coefficients. One of the most popular approaches towards this end is the pooled common correlated effects (CCE) estimator of Pesaran (2006). For this estimator to be consistent at the usual sqrt-NT rate, where N and N denote the number of cross-section and time series observations, respectively, the number of factors cannot be larger than the number of observables. This is a problem in the typical application involving only a small number of regressors. The current paper proposes a simple extension to the CCE procedure by which the requirement can be relaxed. The CCE approach is based on taking the cross-section average of the observables as an estimator of the common factors. The idea put forth in the current paper is to consider not only the average but also other cross-section combinations. The asymptotic properties of the resulting combination-augmented CCE (C3E) estimator are provided and verified in small samples using Monte Carlo simulation.

Suggested Citation

  • Karabiyik, H. & Urbain, J.R.Y.J. & Westerlund, J., 2014. "CCE estimation of factor-augmented regression models with more factors than observables," Research Memorandum 007, Maastricht University, Graduate School of Business and Economics (GSBE).
  • Handle: RePEc:unm:umagsb:2014007
    DOI: 10.26481/umagsb.2014007
    as

    Download full text from publisher

    File URL: https://cris.maastrichtuniversity.nl/ws/files/1445457/guid-318c01f7-57dc-41fa-ac7d-c7c0dc611fcb-ASSET1.0.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.26481/umagsb.2014007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Markus Eberhardt & Christian Helmers & Hubert Strauss, 2013. "Do Spillovers Matter When Estimating Private Returns to R&D?," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 436-448, May.
    2. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    3. Kapetanios, G. & Pesaran, M. Hashem & Yamagata, T., 2011. "Panels with non-stationary multifactor error structures," Journal of Econometrics, Elsevier, vol. 160(2), pages 326-348, February.
    4. Alexander Chudik & M. Hashem Pesaran & Elisa Tosetti, 2011. "Weak and strong cross‐section dependence and estimation of large panels," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 45-90, February.
    5. Chudik, Alexander & Pesaran, M. Hashem, 2015. "Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors," Journal of Econometrics, Elsevier, vol. 188(2), pages 393-420.
    6. Pesaran, M. Hashem & Vanessa Smith, L. & Yamagata, Takashi, 2013. "Panel unit root tests in the presence of a multifactor error structure," Journal of Econometrics, Elsevier, vol. 175(2), pages 94-115.
    7. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    8. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    9. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jörg Breitung & Philipp Hansen, 2021. "Alternative estimation approaches for the factor augmented panel data model with small T," Empirical Economics, Springer, vol. 60(1), pages 327-351, January.
    2. Stauskas, Ovidijus & De Vos, Ignace, 2024. "Handling Distinct Correlated Effects with CCE," MPRA Paper 120194, University Library of Munich, Germany.
    3. Artūras Juodis, 2022. "A regularization approach to common correlated effects estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 788-810, June.
    4. Luca Margaritella & Joakim Westerlund, 2023. "Using information criteria to select averages in CCE," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 405-421.
    5. Ignace De Vos & Gerdie Everaert, 2016. "Bias-Corrected Common Correlated Effects Pooled Estimation In Homogeneous Dynamic Panels," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 16/920, Ghent University, Faculty of Economics and Business Administration.
    6. De Vos, Ignace & Everaert, Gerdie & Sarafidis, Vasilis, 2021. "A method for evaluating the rank condition for CCE estimators," MPRA Paper 112305, University Library of Munich, Germany, revised 09 Mar 2022.
    7. Juodis, Arturas & Sarafidis, Vasilis, 2015. "A Simple Estimator for Short Panels with Common Factors," MPRA Paper 68164, University Library of Munich, Germany.
    8. Al Mamun, Md & Boubaker, Sabri & Hossain, Md Zakir & Manita, Riadh, 2024. "Female political empowerment and green finance," Energy Economics, Elsevier, vol. 131(C).
    9. Recep Ulucak & Danish & Yacouba Kassouri, 2020. "An assessment of the environmental sustainability corridor: Investigating the non‐linear effects of environmental taxation on CO2 emissions," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 1010-1018, July.
    10. Jianqing Fan & Kunpeng Li & Yuan Liao, 2020. "Recent Developments on Factor Models and its Applications in Econometric Learning," Papers 2009.10103, arXiv.org.
    11. Alharbi, Samar S. & Al Mamun, Md & Boubaker, Sabri & Rizvi, Syed Kumail Abbas, 2023. "Green finance and renewable energy: A worldwide evidence," Energy Economics, Elsevier, vol. 118(C).
    12. Yan Sun & Wei Huang, 2022. "Quasi-maximum likelihood estimation of short panel data models with time-varying individual effects," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(1), pages 93-114, January.
    13. Marco Avarucci & Paolo Zaffaroni, 2019. "Robust Nearly-Efficient Estimation of Large Panels with Factor Structures," Papers 1902.11181, arXiv.org.
    14. De Vos, Ignace & Stauskas, Ovidijus, 2024. "Cross-section bootstrap for CCE regressions," Journal of Econometrics, Elsevier, vol. 240(1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juodis, Artūras & Karabiyik, Hande & Westerlund, Joakim, 2021. "On the robustness of the pooled CCE estimator," Journal of Econometrics, Elsevier, vol. 220(2), pages 325-348.
    2. Castagnetti, Carolina & Rossi, Eduardo & Trapani, Lorenzo, 2019. "A two-stage estimator for heterogeneous panel models with common factors," Econometrics and Statistics, Elsevier, vol. 11(C), pages 63-82.
    3. Evan Totty, 2017. "The Effect Of Minimum Wages On Employment: A Factor Model Approach," Economic Inquiry, Western Economic Association International, vol. 55(4), pages 1712-1737, October.
    4. George Kapetanios & Laura Serlenga & Yongcheol Shin, 2023. "Testing for correlation between the regressors and factor loadings in heterogeneous panels with interactive effects," Empirical Economics, Springer, vol. 64(6), pages 2611-2659, June.
    5. Shou-Yung Yin & Chu-An Liu & Chang-Ching Lin, 2021. "Focused Information Criterion and Model Averaging for Large Panels With a Multifactor Error Structure," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 54-68, January.
    6. Su, Liangjun & Ju, Gaosheng, 2018. "Identifying latent grouped patterns in panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 206(2), pages 554-573.
    7. Cem Ertur & Antonio Musolesi, 2017. "Weak and Strong Cross‐Sectional Dependence: A Panel Data Analysis of International Technology Diffusion," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 477-503, April.
    8. J. B. Qian, 2016. "Estimation of Panel Model with Spatial Autoregressive Error and Common Factors," Computational Economics, Springer;Society for Computational Economics, vol. 47(3), pages 367-399, March.
    9. Markus Eberhardt & Andrea Filippo Presbitero, 2013. "This Time They're Different: Heterogeneity;and Nonlinearity in the Relationship;between Debt and Growth," Mo.Fi.R. Working Papers 92, Money and Finance Research group (Mo.Fi.R.) - Univ. Politecnica Marche - Dept. Economic and Social Sciences.
    10. Westerlund, J. & Urbain, J.R.Y.J., 2011. "Cross sectional averages or principal components?," Research Memorandum 053, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    11. Moon, Hyungsik Roger & Weidner, Martin, 2017. "Dynamic Linear Panel Regression Models With Interactive Fixed Effects," Econometric Theory, Cambridge University Press, vol. 33(1), pages 158-195, February.
    12. Hyungsik Roger Roger Moon & Martin Weidner, 2013. "Dynamic linear panel regression models with interactive fixed effects," CeMMAP working papers 63/13, Institute for Fiscal Studies.
    13. Ignace De Vos & Gerdie Everaert, 2016. "Bias-Corrected Common Correlated Effects Pooled Estimation In Homogeneous Dynamic Panels," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 16/920, Ghent University, Faculty of Economics and Business Administration.
    14. Castagnetti, Carolina & Rossi, Eduardo & Trapani, Lorenzo, 2015. "Inference on factor structures in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 184(1), pages 145-157.
    15. Gonzalez, Ignacio & Trivin, Pedro, 2019. "The Global Rise of Asset Prices and the Decline of the Labor Share," MPRA Paper 94587, University Library of Munich, Germany.
    16. Markus Eberhardt & Christian Helmers & Hubert Strauss, 2013. "Do Spillovers Matter When Estimating Private Returns to R&D?," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 436-448, May.
    17. Guowei Cui & Vasilis Sarafidis & Takashi Yamagata, 2023. "IV estimation of spatial dynamic panels with interactive effects: large sample theory and an application on bank attitude towards risk," The Econometrics Journal, Royal Economic Society, vol. 26(2), pages 124-146.
    18. Markus Eberhardt & Francis Teal, 2010. "Aggregation versus Heterogeneity in Cross-Country Growth Empirics," CSAE Working Paper Series 2010-32, Centre for the Study of African Economies, University of Oxford.
    19. Gioldasis, Georgios & Musolesi, Antonio & Simioni, Michel, 2023. "Interactive R&D spillovers: An estimation strategy based on forecasting-driven model selection," International Journal of Forecasting, Elsevier, vol. 39(1), pages 144-169.
    20. Akgun, Oguzhan & Pirotte, Alain & Urga, Giovanni, 2020. "Forecasting using heterogeneous panels with cross-sectional dependence," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1211-1227.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:unm:umagsb:2014007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Andrea Willems or Leonne Portz (email available below). General contact details of provider: https://edirc.repec.org/data/meteonl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.