IDEAS home Printed from https://ideas.repec.org/p/unl/unlfep/wp485.html
   My bibliography  Save this paper

On a theorem by Mas-Colell

Author

Listed:
  • Guilherme Carmona

Abstract

We consider anonymous games with a Lebesgue space of players in which either the action space or players' characteristics are denumer- able. Our main result shows that the set of equilibrium distributions over actions coincides with the set of distributions induced by equilib- rium strategies. This result, together with Mas-Colell (1984)'s theorem, implies that any continuous, denumerable game has an equilibrium strategy. In particular, the theorems of Khan and Sun (1995) and Khan, Rath, and Sun (1997) can be obtained as corollaries of Mas-Colell's.

Suggested Citation

  • Guilherme Carmona, 2006. "On a theorem by Mas-Colell," Nova SBE Working Paper Series wp485, Universidade Nova de Lisboa, Nova School of Business and Economics.
  • Handle: RePEc:unl:unlfep:wp485
    as

    Download full text from publisher

    File URL: https://run.unl.pt/bitstream/10362/82988/1/WP485.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khan, M. Ali & Rath, Kali P. & Sun, Yeneng, 1997. "On the Existence of Pure Strategy Equilibria in Games with a Continuum of Players," Journal of Economic Theory, Elsevier, vol. 76(1), pages 13-46, September.
    2. Hart, Sergiu & Hildenbrand, Werner & Kohlberg, Elon, 1974. "On equilibrium allocations as distributions on the commodity space," Journal of Mathematical Economics, Elsevier, vol. 1(2), pages 159-166, August.
    3. Khan, M. Ali & Yeneng, Sun, 1995. "Pure strategies in games with private information," Journal of Mathematical Economics, Elsevier, vol. 24(7), pages 633-653.
    4. Khan, M. Ali & Sun, Yeneng, 2002. "Non-cooperative games with many players," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 46, pages 1761-1808, Elsevier.
    5. Guilherme Carmona, 2004. "On the Existence of Pure Strategy Nash Equilibria in Large Games," Game Theory and Information 0412008, University Library of Munich, Germany.
    6. SCHMEIDLER, David, 1973. "Equilibrium points of nonatomic games," LIDAM Reprints CORE 146, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Rath, Kali P, 1992. "A Direct Proof of the Existence of Pure Strategy Equilibria in Games with a Continuum of Players," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 2(3), pages 427-433, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Askoura, Y., 2017. "On the core of normal form games with a continuum of players," Mathematical Social Sciences, Elsevier, vol. 89(C), pages 32-42.
    2. Youcef Askoura, 2019. "On the core of normal form games with a continuum of players : a correction," Papers 1903.09819, arXiv.org.
    3. Cerreia-Vioglio, Simone & Maccheroni, Fabio & Schmeidler, David, 2022. "Equilibria of nonatomic anonymous games," Games and Economic Behavior, Elsevier, vol. 135(C), pages 110-131.
    4. Carmona, Guilherme, 2008. "Large games with countable characteristics," Journal of Mathematical Economics, Elsevier, vol. 44(3-4), pages 344-347, February.
    5. Camacho, Carmen & Kamihigashi, Takashi & Sağlam, Çağrı, 2018. "Robust comparative statics for non-monotone shocks in large aggregative games," Journal of Economic Theory, Elsevier, vol. 174(C), pages 288-299.
    6. Jara-Moroni, Pedro, 2012. "Rationalizability in games with a continuum of players," Games and Economic Behavior, Elsevier, vol. 75(2), pages 668-684.
    7. Lorenzo Rocco, 2007. "Anonymity in nonatomic games," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 54(2), pages 225-247, June.
    8. Haomiao Yu, 2014. "Rationalizability in large games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 55(2), pages 457-479, February.
    9. Youcef Askoura, 2011. "The weak-core of a game in normal form with a continuum of players," Post-Print hal-01982380, HAL.
    10. Guilherme Carmona, 2003. "Nash and Limit Equilibria of Games with a Continuum of Players," Game Theory and Information 0311004, University Library of Munich, Germany.
    11. Khan, M. Ali & Sun, Yeneng, 1999. "Non-cooperative games on hyperfinite Loeb spaces1," Journal of Mathematical Economics, Elsevier, vol. 31(4), pages 455-492, May.
    12. Jian Yang, 2017. "A link between sequential semi-anonymous nonatomic games and their large finite counterparts," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(2), pages 383-433, May.
    13. Askoura, Y., 2011. "The weak-core of a game in normal form with a continuum of players," Journal of Mathematical Economics, Elsevier, vol. 47(1), pages 43-47, January.
    14. Noguchi, Mitsunori, 2009. "Existence of Nash equilibria in large games," Journal of Mathematical Economics, Elsevier, vol. 45(1-2), pages 168-184, January.
    15. Noguchi, Mitsunori, 2010. "Large but finite games with asymmetric information," Journal of Mathematical Economics, Elsevier, vol. 46(2), pages 191-213, March.
    16. Jian Yang, 2021. "Analysis of Markovian Competitive Situations Using Nonatomic Games," Dynamic Games and Applications, Springer, vol. 11(1), pages 184-216, March.
    17. Guilherme Carmona, 2004. "On the existence of pure strategy nash equilibria in large games," Nova SBE Working Paper Series wp465, Universidade Nova de Lisboa, Nova School of Business and Economics.
    18. Jara-Moroni, Pedro, 2018. "Rationalizability and mixed strategies in large games," Economics Letters, Elsevier, vol. 162(C), pages 153-156.
    19. Igal Milchtaich, 2000. "Generic Uniqueness of Equilibrium in Large Crowding Games," Mathematics of Operations Research, INFORMS, vol. 25(3), pages 349-364, August.
    20. Yang, Jian, 2011. "Asymptotic interpretations for equilibria of nonatomic games," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 491-499.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:unl:unlfep:wp485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Susana Lopes (email available below). General contact details of provider: https://edirc.repec.org/data/feunlpt.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.