IDEAS home Printed from https://ideas.repec.org/p/ulb/ulbeco/2013-312984.html
   My bibliography  Save this paper

Paris climate agreement: Promoting interdisciplinary science and stakeholders' approaches for multi-scale implementation of continental carbon sequestration

Author

Listed:
  • Tiphaine Chevallier
  • Maud Loireau
  • Romain Courault
  • lydie chapuis-lardy
  • Thierry Desjardins
  • Cécile Gomez
  • Alexandre Grondin
  • Frédéric Guérin
  • Didier Orange
  • Raphaël Pélissier
  • Georges Serpantié
  • Marie Hélène Durand
  • Pierre Derioz
  • Goulven Gildas Laruelle
  • Marie Hélène Schwoob
  • Nicolas Viovy
  • Olivier Barrière
  • Eric Blanchart
  • Vincent Blanfort
  • Michel Brossard
  • Julien Demenois
  • Mireille Fargette
  • Thierry Heulin
  • Gil Mahe
  • Raphaël Manlay
  • Pascal Podwojewski
  • Cornélia Rumpel
  • Benjamin Sultan
  • Jean Luc Chotte

Abstract

The Paris Climate Agreements and Sustainable Development Goals, signed by 197 countries, present agendas and address key issues for implementing multi-scale responses for sustainable development under climate change-an effort that must involve local, regional, national, and supra-national stakeholders. In that regard, Continental Carbon Sequestration (CoCS) and conservation of carbon sinks are recognized increasingly as having potentially important roles in mitigating climate change and adapting to it. Making that potential a reality will require indicators of success for various stakeholders from multidisciplinary backgrounds, plus promotion of long-term implementation of strategic action towards civil society (e.g. law and policy makers, economists, and farmers). To help meet those challenges, this discussion paper summarizes the state of the art and uncertainties regarding CoCS, taking an interdisciplinary, holistic approach toward understanding these complex issues. The first part of the paper discusses the carbon cycle's bio-geophysical processes, while the second introduces the plurality of geographical scales to be addressed when dealing with landscape management for CoCS. The third part addresses systemic viability, vulnerability, and resilience in CoCS practices, before concluding with the need to develop inter-disciplinarity in sustainable science, participative research, and the societal implications of sustainable CoCS actions.

Suggested Citation

  • Tiphaine Chevallier & Maud Loireau & Romain Courault & lydie chapuis-lardy & Thierry Desjardins & Cécile Gomez & Alexandre Grondin & Frédéric Guérin & Didier Orange & Raphaël Pélissier & Georges Serpa, 2020. "Paris climate agreement: Promoting interdisciplinary science and stakeholders' approaches for multi-scale implementation of continental carbon sequestration," ULB Institutional Repository 2013/312984, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:ulb:ulbeco:2013/312984
    Note: SCOPUS: ar.j
    as

    Download full text from publisher

    File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/312984/5/Chevalier_et_al_2020.pdf
    File Function: Full text for the whole work, or for a work part
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Simon L. Lewis & Charlotte E. Wheeler & Edward T. A. Mitchard & Alexander Koch, 2019. "Restoring natural forests is the best way to remove atmospheric carbon," Nature, Nature, vol. 568(7750), pages 25-28, April.
    2. T. Gasser & C. Guivarch & K. Tachiiri & C. D. Jones & P. Ciais, 2015. "Negative emissions physically needed to keep global warming below 2 °C," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    3. Peter A. Raymond & Jens Hartmann & Ronny Lauerwald & Sebastian Sobek & Cory McDonald & Mark Hoover & David Butman & Robert Striegl & Emilio Mayorga & Christoph Humborg & Pirkko Kortelainen & Hans Dürr, 2013. "Global carbon dioxide emissions from inland waters," Nature, Nature, vol. 503(7476), pages 355-359, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ondrasek, G. & Bubalo Kovačić, M. & Carević, I. & Štirmer, N. & Stipičević, S. & Udiković-Kolić, N. & Filipović, V. & Romić, D. & Rengel, Z., 2021. "Bioashes and their potential for reuse to sustain ecosystem services and underpin circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiphaine Chevallier & Maud Loireau & Romain Courault & Lydie Chapuis-Lardy & Thierry Desjardins & Cécile Gomez & Alexandre Grondin & Frédéric Guérin & Didier Orange & Raphaël Pélissier & Georges Serpa, 2020. "Paris Climate Agreement: Promoting Interdisciplinary Science and Stakeholders’ Approaches for Multi-Scale Implementation of Continental Carbon Sequestration," Sustainability, MDPI, vol. 12(17), pages 1-20, August.
    2. Parisa, Zack & Marland, Eric & Sohngen, Brent & Marland, Gregg & Jenkins, Jennifer, 2022. "The time value of carbon storage," Forest Policy and Economics, Elsevier, vol. 144(C).
    3. Nina Tiel & Fabian Fopp & Philipp Brun & Johan Hoogen & Dirk Nikolaus Karger & Cecilia M. Casadei & Lisha Lyu & Devis Tuia & Niklaus E. Zimmermann & Thomas W. Crowther & Loïc Pellissier, 2024. "Regional uniqueness of tree species composition and response to forest loss and climate change," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Nicolás Ruiz, Néstor & Suárez Alonso, María Luisa & Vidal-Abarca, María Rosario, 2021. "Contributions of dry rivers to human well-being: A global review for future research," Ecosystem Services, Elsevier, vol. 50(C).
    5. Ma, Chunyan & Wang, Nan & Chen, Yifeng & Khokarale, Santosh Govind & Bui, Thai Q. & Weiland, Fredrik & Lestander, Torbjörn A. & Rudolfsson, Magnus & Mikkola, Jyri-Pekka & Ji, Xiaoyan, 2020. "Towards negative carbon emissions: Carbon capture in bio-syngas from gasification by aqueous pentaethylenehexamine," Applied Energy, Elsevier, vol. 279(C).
    6. Zhou, Hui & Park, Ah-Hyung Alissa, 2020. "Bio-energy with carbon capture and storage via alkaline thermal Treatment: Production of high purity H2 from wet wheat straw grass with CO2 capture," Applied Energy, Elsevier, vol. 264(C).
    7. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    8. Wang Lu & Pietro Bartocci & Alberto Abad & Aldo Bischi & Haiping Yang & Arturo Cabello & Margarita de Las Obras Loscertales & Mauro Zampilli & Francesco Fantozzi, 2023. "Dimensioning Air Reactor and Fuel Reactor of a Pressurized CLC Plant to Be Coupled to a Gas Turbine: Part 2, the Fuel Reactor," Energies, MDPI, vol. 16(9), pages 1-16, April.
    9. Milan Daus & Katharina Koberger & Kaan Koca & Felix Beckers & Jorge Encinas Fernández & Barbara Weisbrod & Daniel Dietrich & Sabine Ulrike Gerbersdorf & Rüdiger Glaser & Stefan Haun & Hilmar Hofmann &, 2021. "Interdisciplinary Reservoir Management—A Tool for Sustainable Water Resources Management," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    10. Michele Bertone & Luca Stabile & Giorgio Buonanno, 2024. "An Overview of Waste-to-Energy Incineration Integrated with Carbon Capture Utilization or Storage Retrofit Application," Sustainability, MDPI, vol. 16(10), pages 1-18, May.
    11. Kai Cheng & Haitao Yang & Shengli Tao & Yanjun Su & Hongcan Guan & Yu Ren & Tianyu Hu & Wenkai Li & Guangcai Xu & Mengxi Chen & Xiancheng Lu & Zekun Yang & Yanhong Tang & Keping Ma & Jingyun Fang & Qi, 2024. "Carbon storage through China’s planted forest expansion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Danchen Liang & Ganlin Huang, 2023. "Influence of Urban Tree Traits on Their Ecosystem Services: A Literature Review," Land, MDPI, vol. 12(9), pages 1-14, August.
    13. Holly Jean Buck, 2016. "Rapid scale-up of negative emissions technologies: social barriers and social implications," Climatic Change, Springer, vol. 139(2), pages 155-167, November.
    14. Yongmei Hou & Xiaolong Liu & Guilin Han & Li Bai & Jun Li & Yusi Wang, 2022. "The Impacts of Nitrogen Pollution and Urbanization on the Carbon Dioxide Emission from Sewage-Draining River Networks," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    15. Jannik Martens & Birgit Wild & Igor Semiletov & Oleg V. Dudarev & Örjan Gustafsson, 2022. "Circum-Arctic release of terrestrial carbon varies between regions and sources," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Jiping Sheng & Xiaoge Gao & Yongqi Sun, 2024. "Sustainability of the Food Industry: Ecological Efficiency and Influencing Mechanism of Carbon Emissions Trading Policy in China," Sustainability, MDPI, vol. 16(5), pages 1-25, March.
    17. Yonghua Li & Song Yao & Hezhou Jiang & Huarong Wang & Qinchuan Ran & Xinyun Gao & Xinyi Ding & Dandong Ge, 2022. "Spatial-Temporal Evolution and Prediction of Carbon Storage: An Integrated Framework Based on the MOP–PLUS–InVEST Model and an Applied Case Study in Hangzhou, East China," Land, MDPI, vol. 11(12), pages 1-22, December.
    18. Emily Ho & David V. Budescu & Valentina Bosetti & Detlef P. Vuuren & Klaus Keller, 2019. "Not all carbon dioxide emission scenarios are equally likely: a subjective expert assessment," Climatic Change, Springer, vol. 155(4), pages 545-561, August.
    19. Liu, Ying & Feng, Chao, 2023. "Promoting renewable energy through national energy legislation," Energy Economics, Elsevier, vol. 118(C).
    20. Alexander E. Cagle & Alona Armstrong & Giles Exley & Steven M. Grodsky & Jordan Macknick & John Sherwin & Rebecca R. Hernandez, 2020. "The Land Sparing, Water Surface Use Efficiency, and Water Surface Transformation of Floating Photovoltaic Solar Energy Installations," Sustainability, MDPI, vol. 12(19), pages 1-22, October.

    More about this item

    Keywords

    Carbon modelling; Climate change and sustainable development; Continental carbon sequestration; Multi-scalar management; Participative research;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ulb:ulbeco:2013/312984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Pauwels (email available below). General contact details of provider: https://edirc.repec.org/data/ecsulbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.