IDEAS home Printed from https://ideas.repec.org/p/ufg/qdsems/26-2007.html
   My bibliography  Save this paper

Pricing of CDS Options with the HJM approach: a Numerical Implementation

Author

Listed:
  • Viviana Fanelli
  • Silvana Musti

Abstract

This paper provides CDS option pricing in a probability setting equipped with a subfiltration structure. The evolution of the defaultable term structure is modelled using the approach developed in Heath et al. (1992) when the spot rate and the forward rate affect the volatility term. The Euler-Maruyama stochastic integral approximation and the Monte Carlo method are applied to develop a numerical algorithm for pricing. Finally, the Antithetic Variables technique is used to reduce the variance of estimations.

Suggested Citation

  • Viviana Fanelli & Silvana Musti, 2007. "Pricing of CDS Options with the HJM approach: a Numerical Implementation," Quaderni DSEMS 26-2007, Dipartimento di Scienze Economiche, Matematiche e Statistiche, Universita' di Foggia.
  • Handle: RePEc:ufg:qdsems:26-2007
    as

    Download full text from publisher

    File URL: http://www.economia.unifg.it/sites/sd01/files/allegatiparagrafo/29-11-2016/q262007.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chiarella, Carl & Clewlow, Les & Musti, Silvana, 2005. "A volatility decomposition control variate technique for Monte Carlo simulations of Heath Jarrow Morton models," European Journal of Operational Research, Elsevier, vol. 161(2), pages 325-336, March.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    3. Robert A. Jarrow & David Lando & Stuart M. Turnbull, 2008. "A Markov Model for the Term Structure of Credit Risk Spreads," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 18, pages 411-453, World Scientific Publishing Co. Pte. Ltd..
    4. Sanjiv Ranjan Das & Rangarajan K. Sundaram, 2000. "A Discrete-Time Approach to Arbitrage-Free Pricing of Credit Derivatives," Management Science, INFORMS, vol. 46(1), pages 46-62, January.
    5. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    6. Robert A. Jarrow & Stuart M. Turnbull, 2008. "Pricing Derivatives on Financial Securities Subject to Credit Risk," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 17, pages 377-409, World Scientific Publishing Co. Pte. Ltd..
    7. Farshid Jamshidian, 2004. "Valuation of credit default swaps and swaptions," Finance and Stochastics, Springer, vol. 8(3), pages 343-371, August.
    8. Viviana Fanelli & Silvana Musti, 2007. "Modelling Credit Spreads evolution using the Cox Process within the HJM framework," Quaderni DSEMS 27-2007, Dipartimento di Scienze Economiche, Matematiche e Statistiche, Universita' di Foggia.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiarella, Carl & Fanelli, Viviana & Musti, Silvana, 2011. "Modelling the evolution of credit spreads using the Cox process within the HJM framework: A CDS option pricing model," European Journal of Operational Research, Elsevier, vol. 208(2), pages 95-108, January.
    2. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    3. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 5, July-Dece.
    4. Augusto Castillo, 2004. "Firm and Corporate Bond Valuation: A Simulation Dynamic Programming Approach," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 41(124), pages 345-360.
    5. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    6. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    7. Kwamie Dunbar, . "An Empirical Review of United States Corporate Default Swap Valuation: The Implications of Functional Forms," Fordham Economics Dissertations, Fordham University, Department of Economics, number 2005.2.
    8. Saa-Requejo, Jesus & Santa-Clara, Pedro, 1997. "Bond Pricing with Default Risk," University of California at Los Angeles, Anderson Graduate School of Management qt3w71g2ch, Anderson Graduate School of Management, UCLA.
    9. Chen, Bin & Hong, Yongmiao, 2012. "Testing For The Markov Property In Time Series," Econometric Theory, Cambridge University Press, vol. 28(1), pages 130-178, February.
    10. Kwamie Dunbar, 2008. "US corporate default swap valuation: the market liquidity hypothesis and autonomous credit risk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 321-334.
    11. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 6, July-Dece.
    12. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    13. Norbert Jobst & Stavros A. Zenios, 2001. "Extending Credit Risk (Pricing) Models for the Simulation of Portfolios of Interest Rate and Credit Risk Sensitive Securities," Center for Financial Institutions Working Papers 01-25, Wharton School Center for Financial Institutions, University of Pennsylvania.
    14. repec:wyi:journl:002109 is not listed on IDEAS
    15. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2005, January-A.
    16. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    17. Regis Houssou & Olivier Besson, 2010. "Indifference of Defaultable Bonds with Stochastic Intensity models," Papers 1003.4118, arXiv.org.
    18. Chuang-Chang Chang & Ruey-Jenn Ho & Chengfew Lee, 2010. "Pricing credit card loans with default risks: a discrete-time approach," Review of Quantitative Finance and Accounting, Springer, vol. 34(4), pages 413-438, May.
    19. Moreno, Manuel & Platania, Federico, 2015. "A cyclical square-root model for the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 241(1), pages 109-121.
    20. Carl Chiarella & Christina Nikitopoulos Sklibosios & Erik Schlogl, 2007. "A Control Variate Method for Monte Carlo Simulations of Heath-Jarrow-Morton Models with Jumps," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(5), pages 365-399.
    21. Arthur M. Berd, 2009. "A Guide to Modeling Credit Term Structures," Papers 0912.4623, arXiv.org, revised Dec 2009.

    More about this item

    Keywords

    HJM model; Cox process; Monte Carlo method; CDS option;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ufg:qdsems:26-2007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Luca Grilli (email available below). General contact details of provider: https://edirc.repec.org/data/emsfoit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.