IDEAS home Printed from https://ideas.repec.org/p/udf/wpaper/2018037.html
   My bibliography  Save this paper

Nonparametric estimation of international R&D spillovers

Author

Listed:
  • Antonio Musolesi
  • Michel Simioni
  • Georgios Gioldasis

Abstract

In a recent paper, Ertur and Musolesi (Journal of Applied Econometrics 2017; 32: 477-503)employ the Common Correlated Effects(CCE)approach to address the issue of strong cross-sectional dependence while studying international technology diffusion.We carefully revisit this issue by adopting Su and Jin's (Journal of Econometrics 2012; 169: 34-47) method, which extends the CCE approach to nonparametric specications.Our results indicate that the adoption of a nonparametric approach provides signicant benefits in terms of predictive ability.This work also refines previous results by showing threshold effects, nonlinearities and interactions, which are obscured in parametric specications and which have relevant policy implications.

Suggested Citation

  • Antonio Musolesi & Michel Simioni & Georgios Gioldasis, 2018. "Nonparametric estimation of international R&D spillovers," Working Papers 2018037, University of Ferrara, Department of Economics.
  • Handle: RePEc:udf:wpaper:2018037
    as

    Download full text from publisher

    File URL: http://out.economia.unife.it/uploads/dip_deit/quaderni/2018037.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maasoumi, Esfandiar & Racine, Jeff & Stengos, Thanasis, 2007. "Growth and convergence: A profile of distribution dynamics and mobility," Journal of Econometrics, Elsevier, vol. 136(2), pages 483-508, February.
    2. Simon N. Wood, 2006. "Low-Rank Scale-Invariant Tensor Product Smooths for Generalized Additive Mixed Models," Biometrics, The International Biometric Society, vol. 62(4), pages 1025-1036, December.
    3. Chihwa Kao & Min‐Hsien Chiang & Bangtian Chen, 1999. "International R&D Spillovers: An Application of Estimation and Inference in Panel Cointegration," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 691-709, November.
    4. Cem Ertur & Antonio Musolesi, 2017. "Weak and Strong Cross‐Sectional Dependence: A Panel Data Analysis of International Technology Diffusion," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 477-503, April.
    5. Coe, David T. & Helpman, Elhanan & Hoffmaister, Alexander W., 2009. "International R&D spillovers and institutions," European Economic Review, Elsevier, vol. 53(7), pages 723-741, October.
    6. Kapetanios, G. & Pesaran, M. Hashem & Yamagata, T., 2011. "Panels with non-stationary multifactor error structures," Journal of Econometrics, Elsevier, vol. 160(2), pages 326-348, February.
    7. Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114, February.
    8. Coe, David T. & Helpman, Elhanan, 1995. "International R&D spillovers," European Economic Review, Elsevier, vol. 39(5), pages 859-887, May.
    9. Lichtenberg, Frank R. & Pottelsberghe de la Potterie, Bruno v., 1998. "International R&D spillovers: A comment," European Economic Review, Elsevier, vol. 42(8), pages 1483-1491, September.
    10. repec:bla:obuest:v:61:y:1999:i:0:p:691-709 is not listed on IDEAS
    11. del Barrio-Castro, Tomas & Lopez-Bazo, Enrique & Serrano-Domingo, Guadalupe, 2002. "New evidence on international R&D spillovers, human capital and productivity in the OECD," Economics Letters, Elsevier, vol. 77(1), pages 41-45, September.
    12. Shujie Ma & Jeffrey S. Racine & Lijian Yang, 2015. "Spline Regression in the Presence of Categorical Predictors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(5), pages 705-717, August.
    13. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    14. Lee, Gwanghoon, 2006. "The effectiveness of international knowledge spillover channels," European Economic Review, Elsevier, vol. 50(8), pages 2075-2088, November.
    15. Yingxing Li & David Ruppert, 2008. "On the asymptotics of penalized splines," Biometrika, Biometrika Trust, vol. 95(2), pages 415-436.
    16. Su, Liangjun & Jin, Sainan, 2012. "Sieve estimation of panel data models with cross section dependence," Journal of Econometrics, Elsevier, vol. 169(1), pages 34-47.
    17. Gerda Claeskens & Tatyana Krivobokova & Jean D. Opsomer, 2009. "Asymptotic properties of penalized spline estimators," Biometrika, Biometrika Trust, vol. 96(3), pages 529-544.
    18. Delgado, Michael S. & McCloud, Nadine & Kumbhakar, Subal C., 2014. "A generalized empirical model of corruption, foreign direct investment, and growth," Journal of Macroeconomics, Elsevier, vol. 42(C), pages 298-316.
    19. Philip T. Reiss & R. Todd Ogden, 2009. "Smoothing parameter selection for a class of semiparametric linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 505-523, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2018. "Nonparametric estimation of international R&D spillovers," SEEDS Working Papers 0318, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Mar 2018.
    2. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2019. "Nonparametric estimation of R&D international spillovers," Post-Print hal-02789474, HAL.
    3. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2020. "Model uncertainty, nonlinearities and out-of-sample comparison: evidence from international technology diffusion," Working Papers hal-02790523, HAL.
    4. Gioldasis, Georgios & Musolesi, Antonio & Simioni, Michel, 2023. "Interactive R&D spillovers: An estimation strategy based on forecasting-driven model selection," International Journal of Forecasting, Elsevier, vol. 39(1), pages 144-169.
    5. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2020. "Model uncertainty, nonlinearities and out-of-sample comparison: evidence from international technology diffusion," SEEDS Working Papers 0120, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jan 2020.
    6. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2021. "Interactive R&D Spillovers: An estimation strategy based on forecasting-driven model selection," SEEDS Working Papers 0621, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jun 2021.
    7. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2021. "Interactive R&D Spillovers: an estimation strategy based on forecasting-driven model selection," Working Papers hal-03224910, HAL.
    8. Cem Ertur & Antonio Musolesi, 2017. "Weak and Strong Cross‐Sectional Dependence: A Panel Data Analysis of International Technology Diffusion," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 477-503, April.
    9. Massimiliano Mazzanti & Antonio Musolesi, 2020. "Modeling Green Knowledge Production and Environmental Policies with Semiparametric Panel Data Regression models," SEEDS Working Papers 1420, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Sep 2020.
    10. Massimiliano Mazzanti & Antonio Musolesi, 2020. "A Semiparametric Analysis of Green Inventions and Environmental Policies," SEEDS Working Papers 0920, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jun 2020.
    11. Cern Ertur & Antonio Musolesi, 2012. "Spatial autoregressive spillovers vs unobserved common factors models. A panel data analysis of international technology diffusion," INRA UMR CESAER Working Papers 2012/9, INRA UMR CESAER, Centre d'’Economie et Sociologie appliquées à l'’Agriculture et aux Espaces Ruraux.
    12. Ruge-Leiva, Diego-Ivan, 2015. "The Online Supplement to “International R&D Spillovers and other Unobserved Common Spillovers and Shocks”," MPRA Paper 62205, University Library of Munich, Germany.
    13. Coe, David T. & Helpman, Elhanan & Hoffmaister, Alexander W., 2009. "International R&D spillovers and institutions," European Economic Review, Elsevier, vol. 53(7), pages 723-741, October.
    14. Capolupo, Rosa, 2009. "The New Growth Theories and Their Empirics after Twenty Years," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-72.
    15. Kul Luintel & Mosahid Khan & Konstantinos Theodoridis, 2014. "On the robustness of R&D," Journal of Productivity Analysis, Springer, vol. 42(2), pages 137-155, October.
    16. Heike Belitz & Florian Mölders, 2016. "International knowledge spillovers through high-tech imports and R&D of foreign-owned firms," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 25(4), pages 590-613, June.
    17. Krammer, Sorin M.S., 2015. "Do good institutions enhance the effect of technological spillovers on productivity? Comparative evidence from developed and transition economies," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 133-154.
    18. Antonio Cubel & Vicente Esteve & Maria Teresa Sanchis & Juan A. Sanchis-Llopis, 2014. "The effect of foreign and domestic patents on total factor productivity during the second half of the 20th century," Working Papers 06/14, Instituto Universitario de Análisis Económico y Social.
    19. Simon N. Wood & Zheyuan Li & Gavin Shaddick & Nicole H. Augustin, 2017. "Generalized Additive Models for Gigadata: Modeling the U.K. Black Smoke Network Daily Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1199-1210, July.
    20. Markus Eberhardt & Christian Helmers & Hubert Strauss, 2013. "Do Spillovers Matter When Estimating Private Returns to R&D?," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 436-448, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:udf:wpaper:2018037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alberto Benati (email available below). General contact details of provider: https://edirc.repec.org/data/deferit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.