IDEAS home Printed from https://ideas.repec.org/p/udb/wpaper/uwec-2009-01.html
   My bibliography  Save this paper

Predicting Stock Volatility Using After-Hours Information

Author

Listed:
  • Chun-Hung Chen

    (KPMG)

  • Wei-Choun Yu

    (Winona State University)

  • Eric Zivot

    (University of Washington)

Abstract

We use realized volatilities based on after hours high frequency returns to predict next day volatility. We extend GARCH and long-memory forecasting models to include additional information: the whole night, the preopen, the postclose realized variance, and the overnight squared return. For four NASDAQ stocks (MSFT, AMGN, CSCO, and YHOO) we find that the inclusion of the preopen variance can improve the out-of-sample forecastability of the next day conditional day volatility. Additionally, we find that the postclose variance and the overnight squared return do not provide any predictive power for the next day conditional volatility. Our findings support the results of prior studies that traders trade for non-information reasons in the postclose period and trade for information reasons in the preopen period.

Suggested Citation

  • Chun-Hung Chen & Wei-Choun Yu & Eric Zivot, 2009. "Predicting Stock Volatility Using After-Hours Information," Working Papers UWEC-2009-01, University of Washington, Department of Economics.
  • Handle: RePEc:udb:wpaper:uwec-2009-01
    as

    Download full text from publisher

    File URL: http://faculty.washington.edu/ezivot/research/afterHoursGarch.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    2. John Y. Campbell & Martin Lettau & Burton G. Malkiel & Yexiao Xu, 2001. "Have Individual Stocks Become More Volatile? An Empirical Exploration of Idiosyncratic Risk," Journal of Finance, American Finance Association, vol. 56(1), pages 1-43, February.
    3. repec:bla:jfinan:v:59:y:2004:i:2:p:681-710 is not listed on IDEAS
    4. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2002. "Parametric and Nonparametric Volatility Measurement," Center for Financial Institutions Working Papers 02-27, Wharton School Center for Financial Institutions, University of Pennsylvania.
    5. Tim Bollerslev & Jonathan H. Wright, 2001. "High-Frequency Data, Frequency Domain Inference, And Volatility Forecasting," The Review of Economics and Statistics, MIT Press, vol. 83(4), pages 596-602, November.
    6. Michael J. Barclay, 2003. "Price Discovery and Trading After Hours," The Review of Financial Studies, Society for Financial Studies, vol. 16(4), pages 1041-1073.
    7. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    8. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    9. F. M. Bandi & J. R. Russell, 2008. "Microstructure Noise, Realized Variance, and Optimal Sampling," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 75(2), pages 339-369.
    10. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    11. Charles Cao & Eric Ghysels & Frank Hatheway, 2000. "Price Discovery without Trading: Evidence from the Nasdaq Preopening," Journal of Finance, American Finance Association, vol. 55(3), pages 1339-1365, June.
    12. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    13. Beran, Jan & Ocker, Dirk, 2001. "Volatility of Stock-Market Indexes--An Analysis Based on SEMIFAR Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 103-116, January.
    14. Beran, Jan & Feng, Yuanhua, 2002. "SEMIFAR models--a semiparametric approach to modelling trends, long-range dependence and nonstationarity," Computational Statistics & Data Analysis, Elsevier, vol. 40(2), pages 393-419, August.
    15. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    16. Beran, Jan & Ocker, Dirk, 1999. "SEMIFAR Forecasts, with Applications to Foreign Exchange Rates," CoFE Discussion Papers 99/13, University of Konstanz, Center of Finance and Econometrics (CoFE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kusen, Alex & Rudolf, Markus, 2019. "Feedback trading: Strategies during day and night with global interconnectedness," Research in International Business and Finance, Elsevier, vol. 48(C), pages 438-463.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Chun-Hung & Yu, Wei-Choun & Zivot, Eric, 2012. "Predicting stock volatility using after-hours information: Evidence from the NASDAQ actively traded stocks," International Journal of Forecasting, Elsevier, vol. 28(2), pages 366-383.
    2. Alemany, Nuria & Aragó, Vicent & Salvador, Enrique, 2020. "The distribution of index futures realised volatility under seasonality and microstructure noise," Economic Modelling, Elsevier, vol. 93(C), pages 398-414.
    3. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    4. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    5. Thomakos, Dimitrios D. & Wang, Tao, 2003. "Realized volatility in the futures markets," Journal of Empirical Finance, Elsevier, vol. 10(3), pages 321-353, May.
    6. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    7. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," PIER Working Paper Archive 03-025, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Sep 2003.
    8. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    9. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2002. "Parametric and Nonparametric Volatility Measurement," Center for Financial Institutions Working Papers 02-27, Wharton School Center for Financial Institutions, University of Pennsylvania.
    10. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    11. Ceylan, Ozcan, 2012. "Time-Varying Volatility Asymmetry: A Conditioned HAR-RV(CJ) EGARCH-M Model," GIAM Working Papers 12-4, Galatasaray University Economic Research Center.
    12. Sharma, Prateek & Vipul,, 2016. "Forecasting stock market volatility using Realized GARCH model: International evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 59(C), pages 222-230.
    13. Taylor, Nicholas, 2008. "Can idiosyncratic volatility help forecast stock market volatility?," International Journal of Forecasting, Elsevier, vol. 24(3), pages 462-479.
    14. Stavros Degiannakis, 2004. "Volatility forecasting: evidence from a fractional integrated asymmetric power ARCH skewed-t model," Applied Financial Economics, Taylor & Francis Journals, vol. 14(18), pages 1333-1342.
    15. Sattarhoff, Cristina & Lux, Thomas, 2023. "Forecasting the variability of stock index returns with the multifractal random walk model for realized volatilities," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1678-1697.
    16. Ben Tims & Ronald Mahieu, 2006. "A Range-Based Multivariate Stochastic Volatility Model for Exchange Rates," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 409-424.
    17. Jim Griffin & Jia Liu & John M. Maheu, 2021. "Bayesian Nonparametric Estimation of Ex Post Variance [Out of Sample Forecasts of Quadratic Variation]," Journal of Financial Econometrics, Oxford University Press, vol. 19(5), pages 823-859.
    18. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    19. Beum-Jo Park, 2011. "Forecasting Volatility in Financial Markets Using a Bivariate Stochastic Volatility Model with Surprising Information," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 37-58, September.
    20. Julien Chevallier & Benoît Sévi, 2011. "On the realized volatility of the ECX CO 2 emissions 2008 futures contract: distribution, dynamics and forecasting," Annals of Finance, Springer, vol. 7(1), pages 1-29, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:udb:wpaper:uwec-2009-01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael Goldblatt (email available below). General contact details of provider: https://edirc.repec.org/data/deuwaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.