IDEAS home Printed from https://ideas.repec.org/p/uct/uconnp/2021-05.html
   My bibliography  Save this paper

Choice of Inputs and Outputs for Production Analysis

Author

Listed:
  • Subhash C. Ray

    (University of Connecticut)

Abstract

Production creates value by transforming inputs into outputs. Classification of variables as inputs or outputs depends on the scope of decision making by the firm. Inputs enter the boundary of the firm from outside without any prior processing by the firm and once transformed into outputs exit its jurisdiction without any further processing. This chapter highlights the defining characteristics of inputs and outputs both for single stage and multi-stage production. The necessary conditions that must be met for a valid aggregation of several inputs into total expenditure are discussed both for nonparametric and parametric models of production. Several statistical tests of hypotheses related to aggregation of several inputs or exclusion of individual inputs in nonparametric models are discussed. The technology set of feasible input-output bundles invariably depends on many environmental or contextual variables that are outside the control of the producer. In parametric Stochastic Frontier Analysis they can be directly included as determinants of the mean or variance the technical efficiency factor causing shifts in the production frontier. In nonparametric Data Envelopment Analysis influence of such factors is measured through a second stage regression of efficiency scores on the contextual variables. The alternative approaches of a second stage least squares regression and a truncated regression are briefly discussed. The chapter ends with examples of input-output choice in several popular areas of application like manufacturing, banking, and health care.

Suggested Citation

  • Subhash C. Ray, 2021. "Choice of Inputs and Outputs for Production Analysis," Working papers 2021-05, University of Connecticut, Department of Economics.
  • Handle: RePEc:uct:uconnp:2021-05
    as

    Download full text from publisher

    File URL: https://media.economics.uconn.edu/working/2021-05.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Léopold Simar & Paul Wilson, 2000. "Statistical Inference in Nonparametric Frontier Models: The State of the Art," Journal of Productivity Analysis, Springer, vol. 13(1), pages 49-78, January.
    2. Subhash C. Ray, 2022. "Conceptualization and Measurement of Productivity Growth and Technical Change: A Nonparametric Approach," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 20, pages 821-870, Springer.
    3. Inmaculada Sirvent & José L. Ruiz & Fernando Borrás & Jesús T. Pastor, 2005. "A Monte Carlo Evaluation Of Several Tests For The Selection Of Variables In Dea Models," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 325-343.
    4. Ray, Subhash C. & Das, Abhiman, 2010. "Distribution of cost and profit efficiency: Evidence from Indian banking," European Journal of Operational Research, Elsevier, vol. 201(1), pages 297-307, February.
    5. Ray,Subhash C., 2012. "Data Envelopment Analysis," Cambridge Books, Cambridge University Press, number 9781107405264.
    6. Jesús T. Pastor & JosÉ L. Ruiz & Inmaculada Sirvent, 2002. "A Statistical Test for Nested Radial Dea Models," Operations Research, INFORMS, vol. 50(4), pages 728-735, August.
    7. SIMAR , Léopold, 1995. "Aspects of Statistical Analysis in DEA-Type Frontier Models," LIDAM Discussion Papers CORE 1995061, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Simar, L., 1991. "Estimating efficiencies from frontier models with panel data: a comparison of parametric, non-parametric and semi-parametric methods with boot strapping," LIDAM Discussion Papers CORE 1991026, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    10. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, vol. 44(1), pages 49-61, January.
    11. N Adler & B Golany, 2002. "Including principal component weights to improve discrimination in data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(9), pages 985-991, September.
    12. Berger, Allen N. & Mester, Loretta J., 1997. "Inside the black box: What explains differences in the efficiencies of financial institutions?," Journal of Banking & Finance, Elsevier, vol. 21(7), pages 895-947, July.
    13. Rajiv Banker & Hsihui Chang & Ram Natarajan, 2007. "Estimating DEA technical and allocative inefficiency using aggregate cost or revenue data," Journal of Productivity Analysis, Springer, vol. 27(2), pages 115-121, April.
    14. Banker, Rajiv & Natarajan, Ram & Zhang, Daqun, 2019. "Two-stage estimation of the impact of contextual variables in stochastic frontier production function models using Data Envelopment Analysis: Second stage OLS versus bootstrap approaches," European Journal of Operational Research, Elsevier, vol. 278(2), pages 368-384.
    15. Sickles,Robin C. & Zelenyuk,Valentin, 2019. "Measurement of Productivity and Efficiency," Cambridge Books, Cambridge University Press, number 9781107036161, September.
    16. Sealey, Calvin W, Jr & Lindley, James T, 1977. "Inputs, Outputs, and a Theory of Production and Cost at Depository Financial Institutions," Journal of Finance, American Finance Association, vol. 32(4), pages 1251-1266, September.
    17. Hung-Jen Wang, 2002. "Heteroscedasticity and Non-Monotonic Efficiency Effects of a Stochastic Frontier Model," Journal of Productivity Analysis, Springer, vol. 18(3), pages 241-253, November.
    18. Rajiv D. Banker, 1993. "Maximum Likelihood, Consistency and Data Envelopment Analysis: A Statistical Foundation," Management Science, INFORMS, vol. 39(10), pages 1265-1273, October.
    19. Adler, Nicole & Golany, Boaz, 2001. "Evaluation of deregulated airline networks using data envelopment analysis combined with principal component analysis with an application to Western Europe," European Journal of Operational Research, Elsevier, vol. 132(2), pages 260-273, July.
    20. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    21. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    22. Rolf Fare & Shawna Grosskopf & Valentin Zelenyuk, 2004. "Aggregation bias and its bounds in measuring technical efficiency," Applied Economics Letters, Taylor & Francis Journals, vol. 11(10), pages 657-660.
    23. Stephen M. Miller, 2022. "Empirical Analysis of Production Economics: Applications to Banking," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 29, pages 1165-1191, Springer.
    24. Rajiv D. Banker & Ram Natarajan, 2008. "Evaluating Contextual Variables Affecting Productivity Using Data Envelopment Analysis," Operations Research, INFORMS, vol. 56(1), pages 48-58, February.
    25. Sumon Kumar Bhaumik, 2022. "Technical Efficiency and Its Determinants in the Manufacturing Sector: What We Know and What We Should Know," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 36, pages 1411-1432, Springer.
    26. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    27. Varian, Hal R, 1984. "The Nonparametric Approach to Production Analysis," Econometrica, Econometric Society, vol. 52(3), pages 579-597, May.
    28. Rajiv D. Banker & Richard C. Morey, 1986. "The Use of Categorical Variables in Data Envelopment Analysis," Management Science, INFORMS, vol. 32(12), pages 1613-1627, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    2. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    3. Fadzlan Sufian & Fakarudin Kamarudin, 2014. "The impact of ownership structure on bank productivity and efficiency: Evidence from semi-parametric Malmquist Productivity Index," Cogent Economics & Finance, Taylor & Francis Journals, vol. 2(1), pages 1-27, December.
    4. Boutheina Bannour & Asma Sghaier & Mohammad Nurunnabi, 2020. "How to Choose a Nonparametric Frontier Model? Technical Efficiency of Turkish Banks Assessing Global," Global Business Review, International Management Institute, vol. 21(2), pages 348-364, April.
    5. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    6. Fadzlan Sufian & Fakarudin Kamarudin, 2017. "Forced Mergers on Bank Efficiency and Productivity: Evidence from Semi-parametric Malmquist Productivity Index," Global Business Review, International Management Institute, vol. 18(1), pages 19-44, February.
    7. Aldanondo, Ana M. & Casasnovas, Valero L., 2016. "A note on the impact of multiple input aggregators in technical efficiency estimation," MPRA Paper 75290, University Library of Munich, Germany.
    8. Mazumdar, Mainak & Rajeev, Meenakshi & Ray, Subhash C., 2012. "Sources of Heterogeneity in the Efficiency of Indian Pharmaceutical Firms," Indian Economic Review, Department of Economics, Delhi School of Economics, vol. 47(2), pages 191-221.
    9. Esteve, Miriam & Aparicio, Juan & Rodriguez-Sala, Jesus J. & Zhu, Joe, 2023. "Random Forests and the measurement of super-efficiency in the context of Free Disposal Hull," European Journal of Operational Research, Elsevier, vol. 304(2), pages 729-744.
    10. Amir Moradi-Motlagh & Ali Emrouznejad, 2022. "The origins and development of statistical approaches in non-parametric frontier models: a survey of the first two decades of scholarly literature (1998–2020)," Annals of Operations Research, Springer, vol. 318(1), pages 713-741, November.
    11. Natalya Zelenyuk & Valentin Zelenyuk, 2015. "Productivity Drivers of Efficiency in Banking: Importance of Model Specifications," CEPA Working Papers Series WP082015, School of Economics, University of Queensland, Australia.
    12. Calogero Guccio & Marco Ferdinando Martorana & Isidoro Mazza & Giacomo Pignataro & Ilde Rizzo, 2022. "Is innovation in ICT valuable for the efficiency of Italian museums?," European Planning Studies, Taylor & Francis Journals, vol. 30(9), pages 1695-1716, September.
    13. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    14. Calogero Guccio & Marco Ferdinando Martorana & Luisa Monaco, 2016. "Evaluating the impact of the Bologna Process on the efficiency convergence of Italian universities: a non-parametric frontier approach," Journal of Productivity Analysis, Springer, vol. 45(3), pages 275-298, June.
    15. R. Amy Puenpatom & Robert Rosenman, 2006. "Efficiency of Thai provincial public hospitals after the introduction of National Health Insurance Program," Working Papers 2006-2, School of Economic Sciences, Washington State University.
    16. Subhash C. Ray, 2018. "Data Envelopment Analysis with Alternative Returns to Scale," Working papers 2018-20, University of Connecticut, Department of Economics.
    17. Chen, Zhongfei & Matousek, Roman & Wanke, Peter, 2018. "Chinese bank efficiency during the global financial crisis: A combined approach using satisficing DEA and Support Vector Machines☆," The North American Journal of Economics and Finance, Elsevier, vol. 43(C), pages 71-86.
    18. Mohammad Shahid Zaman & Anup Kumar Bhandari, 2020. "Financial deregulation, competition and cost efficiency of Indian commercial banks: is there any convergence?," Indian Economic Review, Springer, vol. 55(2), pages 283-312, December.
    19. Banker, Rajiv & Park, Han-Up & Sahoo, Biresh, 2022. "A statistical foundation for the measurement of managerial ability," MPRA Paper 111832, University Library of Munich, Germany.
    20. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.

    More about this item

    Keywords

    Multi-stage production; Input aggregation; Contextual variables; Second stage regression;
    All these keywords.

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uct:uconnp:2021-05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mark McConnel (email available below). General contact details of provider: https://edirc.repec.org/data/deuctus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.