IDEAS home Printed from https://ideas.repec.org/p/ucm/doicae/1613.html
   My bibliography  Save this paper

A bidding strategy for minimizing the imbalances costs for renewable generators in Spanish power markets

Author

Listed:
  • Francisco Javier Eransus

    (Instituto Complutense de Análisis Económico (ICAE) – Facultad de Ciencias Económicas y Empresariales, Universidad Complutense de Madrid)

Abstract

The aim of this paper is to suggest a simple methodology to be used by renewable power generators to bid in Spanish markets in order to minimize the cost of their imbalances. As it is known, the optimal bid depends on the probability distribution function of the energy to produce, of the probability distribution function of the future system imbalance and of its expected cost. We assume simple methods for estimating any of these parameters and, using actual data of 2014, we test the potential economic benefit for a wind generator from using our optimal bid instead of just the expected power generation. We find evidence that Spanish wind generators savings would be from 7% to 26%.

Suggested Citation

  • Francisco Javier Eransus, 2016. "A bidding strategy for minimizing the imbalances costs for renewable generators in Spanish power markets," Documentos de Trabajo del ICAE 2016-13, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
  • Handle: RePEc:ucm:doicae:1613
    as

    Download full text from publisher

    File URL: https://eprints.ucm.es/id/eprint/39134/1/1613.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Holttinen, H., 2005. "Optimal electricity market for wind power," Energy Policy, Elsevier, vol. 33(16), pages 2052-2063, November.
    2. Chaves-Ávila, José Pablo & Hakvoort, Rudi A. & Ramos, Andrés, 2013. "Short-term strategies for Dutch wind power producers to reduce imbalance costs," Energy Policy, Elsevier, vol. 52(C), pages 573-582.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatih Karanfil and Yuanjing Li, 2017. "The Role of Continuous Intraday Electricity Markets: The Integration of Large-Share Wind Power Generation in Denmark," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    2. Eicke, Anselm & Ruhnau, Oliver & Hirth, Lion, 2021. "Electricity balancing as a market equilibrium," EconStor Preprints 233852, ZBW - Leibniz Information Centre for Economics.
    3. Jun Maekawa & Koji Shimada, 2019. "A Speculative Trading Model for the Electricity Market: Based on Japan Electric Power Exchange," Energies, MDPI, vol. 12(15), pages 1-15, July.
    4. Rubin, Ofir D. & Babcock, Bruce A., 2013. "The impact of expansion of wind power capacity and pricing methods on the efficiency of deregulated electricity markets," Energy, Elsevier, vol. 59(C), pages 676-688.
    5. Batalla-Bejerano, Joan & Costa-Campi, Maria Teresa & Trujillo-Baute, Elisa, 2016. "Collateral effects of liberalisation: Metering, losses, load profiles and cost settlement in Spain’s electricity system," Energy Policy, Elsevier, vol. 94(C), pages 421-431.
    6. Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
    7. Di Cosmo, Valeria & Malaguzzi Valeri, Laura, 2018. "Wind, storage, interconnection and the cost of electricity generation," Energy Economics, Elsevier, vol. 69(C), pages 1-18.
    8. Croonenbroeck, Carsten & Møller Dahl, Christian, 2014. "Accurate medium-term wind power forecasting in a censored classification framework," Discussion Papers 351, European University Viadrina Frankfurt (Oder), Department of Business Administration and Economics.
    9. Okur, Özge & Voulis, Nina & Heijnen, Petra & Lukszo, Zofia, 2019. "Aggregator-mediated demand response: Minimizing imbalances caused by uncertainty of solar generation," Applied Energy, Elsevier, vol. 247(C), pages 426-437.
    10. Pape, Christian, 2018. "The impact of intraday markets on the market value of flexibility — Decomposing effects on profile and the imbalance costs," Energy Economics, Elsevier, vol. 76(C), pages 186-201.
    11. Croonenbroeck, Carsten & Stadtmann, Georg, 2015. "Minimizing asymmetric loss in medium-term wind power forecasting," Renewable Energy, Elsevier, vol. 81(C), pages 197-208.
    12. Chaves-Ávila, José Pablo & van der Veen, Reinier A.C. & Hakvoort, Rudi A., 2014. "The interplay between imbalance pricing mechanisms and network congestions – Analysis of the German electricity market," Utilities Policy, Elsevier, vol. 28(C), pages 52-61.
    13. Brijs, Tom & De Jonghe, Cedric & Hobbs, Benjamin F. & Belmans, Ronnie, 2017. "Interactions between the design of short-term electricity markets in the CWE region and power system flexibility," Applied Energy, Elsevier, vol. 195(C), pages 36-51.
    14. repec:hal:spmain:info:hdl:2441/53r60a8s3kup1vc9l564igg8g is not listed on IDEAS
    15. Haque, A.N.M.M. & Ibn Saif, A.U.N. & Nguyen, P.H. & Torbaghan, S.S., 2016. "Exploration of dispatch model integrating wind generators and electric vehicles," Applied Energy, Elsevier, vol. 183(C), pages 1441-1451.
    16. Scharff, Richard & Amelin, Mikael & Söder, Lennart, 2013. "Approaching wind power forecast deviations with internal ex-ante self-balancing," Energy, Elsevier, vol. 57(C), pages 106-115.
    17. Lion Hirth & Falko Ueckerdt & Ottmar Edenhofer, 2014. "Why Wind Is Not Coal: On the Economics of Electricity," Working Papers 2014.39, Fondazione Eni Enrico Mattei.
    18. Joos, Michael & Staffell, Iain, 2018. "Short-term integration costs of variable renewable energy: Wind curtailment and balancing in Britain and Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 45-65.
    19. Haifeng Zhang & Feng Gao & Jiang Wu & Kun Liu & Xiaolin Liu, 2012. "Optimal Bidding Strategies for Wind Power Producers in the Day-ahead Electricity Market," Energies, MDPI, vol. 5(11), pages 1-20, November.
    20. Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
    21. Croonenbroeck, Carsten & Dahl, Christian Møller, 2014. "Accurate medium-term wind power forecasting in a censored classification framework," Energy, Elsevier, vol. 73(C), pages 221-232.

    More about this item

    Keywords

    Power markets; Renewable energy; Uncertainty; Optimal bidding; Forecasting.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucm:doicae:1613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Águeda González Abad (email available below). General contact details of provider: https://edirc.repec.org/data/feucmes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.