IDEAS home Printed from https://ideas.repec.org/p/ucd/wpaper/201120.html
   My bibliography  Save this paper

Generalized Extreme Value Regression for Binary Rare Events Data: an Application to Credit Defaults

Author

Listed:
  • Raffaella Calabrese

    (Geary Institute, University College Dublin)

  • Silvia Angela Osmetti

    (Department of Statistics, University Cattolica del Dacro Cuore, Milan)

Abstract

The most used regression model with binary dependent variable is the logistic regression model. When the dependent variable represents a rare event, the logistic regression model shows relevant drawbacks. In order to overcome these drawbacks we propose the Generalized Extreme Value (GEV) regression model. In particular, in a Generalized Linear Model (GLM) with binary dependent variable we suggest the quantile function of the GEV distribution as link function, so our attention is focused on the tail of the response curve for values close to one. The estimation procedure is the maximum likelihood method. This model accommodates skewness and it presents a generalization of GLMs with log-log link function. In credit risk analysis a pivotal topic is the default probability estimation. Since defaults are rare events, we apply the GEV regression to empirical data on Italian Small and Medium Enterprises (SMEs) to model their default probabilities.

Suggested Citation

  • Raffaella Calabrese & Silvia Angela Osmetti, 2011. "Generalized Extreme Value Regression for Binary Rare Events Data: an Application to Credit Defaults," Working Papers 201120, Geary Institute, University College Dublin.
  • Handle: RePEc:ucd:wpaper:201120
    as

    Download full text from publisher

    File URL: http://www.ucd.ie/geary/static/publications/workingpapers/gearywp201120.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D. J. Hand & W. E. Henley, 1997. "Statistical Classification Methods in Consumer Credit Scoring: a Review," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 160(3), pages 523-541, September.
    2. Edmister, Robert O., 1972. "An Empirical Test of Financial Ratio Analysis for Small Business Failure Prediction," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(2), pages 1477-1493, March.
    3. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    4. King, Gary & Zeng, Langche, 2001. "Logistic Regression in Rare Events Data," Political Analysis, Cambridge University Press, vol. 9(2), pages 137-163, January.
    5. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    6. Jesús Saurina & Carlos Trucharte, 2004. "The Impact of Basel II on Lending to Small- and Medium-Sized Firms: A Regulatory Policy Assessment Based on Spanish Credit Register Data," Journal of Financial Services Research, Springer;Western Finance Association, vol. 26(2), pages 121-144, October.
    7. Altman, Edward I. & Haldeman, Robert G. & Narayanan, P., 1977. "ZETATM analysis A new model to identify bankruptcy risk of corporations," Journal of Banking & Finance, Elsevier, vol. 1(1), pages 29-54, June.
    8. Thomas C. Wilson, 1998. "Portfolio credit risk," Economic Policy Review, Federal Reserve Bank of New York, vol. 4(Oct), pages 71-82.
    9. Michel Dietsch, 2004. "Should SME exposures be treated as retail or corporate exposures: a comparative analysis of probabilities of default and assets correlations in French and German SMEs," ULB Institutional Repository 2013/14164, ULB -- Universite Libre de Bruxelles.
    10. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    11. Dietsch, Michel & Petey, Joel, 2004. "Should SME exposures be treated as retail or corporate exposures? A comparative analysis of default probabilities and asset correlations in French and German SMEs," Journal of Banking & Finance, Elsevier, vol. 28(4), pages 773-788, April.
    12. Robert J. Barro, 2009. "Rare Disasters, Asset Prices, and Welfare Costs," American Economic Review, American Economic Association, vol. 99(1), pages 243-264, March.
    13. Paul Embrechts & Sidney Resnick & Gennady Samorodnitsky, 1999. "Extreme Value Theory as a Risk Management Tool," North American Actuarial Journal, Taylor & Francis Journals, vol. 3(2), pages 30-41.
    14. Ely Dahan & Haim Mendelson, 2001. "An Extreme-Value Model of Concept Testing," Management Science, INFORMS, vol. 47(1), pages 102-116, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eleonora Bartoloni & Maurizio Baussola, 2014. "Financial Performance in Manufacturing Firms: A Comparison Between Parametric and Non-Parametric Approaches," Business Economics, Palgrave Macmillan;National Association for Business Economics, vol. 49(1), pages 32-45, January.
    2. Laudagé, Christian & Desmettre, Sascha & Wenzel, Jörg, 2019. "Severity modeling of extreme insurance claims for tariffication," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 77-92.
    3. Raffaella Calabrese, 2012. "Improving Classifier Performance Assessment of Credit Scoring Models," Working Papers 201204, Geary Institute, University College Dublin.
    4. Raffaella Calabrese, 2011. "Cost-sensitive classification for rare events: an application to the credit rating model validation for SMEs," Working Papers 201134, Geary Institute, University College Dublin.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Paula Matias Gama & Helena Susana Amaral Geraldes, 2012. "Credit risk assessment and the impact of the New Basel Capital Accord on small and medium‐sized enterprises," Management Research Review, Emerald Group Publishing Limited, vol. 35(8), pages 727-749, July.
    2. John Nkwoma Inekwe, 2016. "Financial Distress, Employees’ Welfare and Entrepreneurship Among SMEs," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 129(3), pages 1135-1153, December.
    3. Ciampi, Francesco, 2015. "Corporate governance characteristics and default prediction modeling for small enterprises. An empirical analysis of Italian firms," Journal of Business Research, Elsevier, vol. 68(5), pages 1012-1025.
    4. Carmen Gallucci & Rosalia Santullli & Michele Modina & Vincenzo Formisano, 2023. "Financial ratios, corporate governance and bank-firm information: a Bayesian approach to predict SMEs’ default," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 27(3), pages 873-892, September.
    5. El Kalak, Izidin & Hudson, Robert, 2016. "The effect of size on the failure probabilities of SMEs: An empirical study on the US market using discrete hazard model," International Review of Financial Analysis, Elsevier, vol. 43(C), pages 135-145.
    6. Francesco Ciampi & Valentina Cillo & Fabio Fiano, 2020. "Combining Kohonen maps and prior payment behavior for small enterprise default prediction," Small Business Economics, Springer, vol. 54(4), pages 1007-1039, April.
    7. K.K. Jain & P.K. Gupta & Sanjiv Mittal, 2011. "Logistic Predictive Model for SMEs Financing in India," Vision, , vol. 15(4), pages 331-346, December.
    8. Lin, Hsiou-Wei William & Lo, Huai-Chun & Wu, Ruei-Shian, 2016. "Modeling default prediction with earnings management," Pacific-Basin Finance Journal, Elsevier, vol. 40(PB), pages 306-322.
    9. Trueck, Stefan & Rachev, Svetlozar T., 2008. "Rating Based Modeling of Credit Risk," Elsevier Monographs, Elsevier, edition 1, number 9780123736833.
    10. Filipe, Sara Ferreira & Grammatikos, Theoharry & Michala, Dimitra, 2016. "Forecasting distress in European SME portfolios," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 112-135.
    11. Ha-Thu Nguyen, 2015. "How is credit scoring used to predict default in China?," EconomiX Working Papers 2015-1, University of Paris Nanterre, EconomiX.
    12. Clara Cardone-Riportella & Antonio Trujillo-Ponce & Anahí Briozzo, 2013. "Analyzing the role of mutual guarantee societies on bank capital requirements for small and medium-sized enterprises," Journal of Economic Policy Reform, Taylor & Francis Journals, vol. 16(2), pages 142-159, June.
    13. Jairaj Gupta & Nicholas Wilson & Andros Gregoriou & Jerome Healy, 2014. "The value of operating cash flow in modelling credit risk for SMEs," Applied Financial Economics, Taylor & Francis Journals, vol. 24(9), pages 649-660, May.
    14. Dimitra Michala & Theoharry Grammatikos & Sara Ferreira Filipe, 2013. "Forecasting distress in European SME portfolios," DEM Discussion Paper Series 13-2, Department of Economics at the University of Luxembourg.
    15. Zhichao Luo & Pingyu Hsu & Ni Xu, 2020. "SME Default Prediction Framework with the Effective Use of External Public Credit Data," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    16. Antonio Blanco-Oliver & Ana Irimia-Dieguez & María Oliver-Alfonso & Nicholas Wilson, 2015. "Systemic Sovereign Risk and Asset Prices: Evidence from the CDS Market, Stressed European Economies and Nonlinear Causality Tests," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 65(2), pages 144-166, April.
    17. repec:ath:journl:tome:34:v:2:y:2014:i:34:p:99-109 is not listed on IDEAS
    18. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    19. Mohammad S. Uddin & Guotai Chi & Mazin A. M. Al Janabi & Tabassum Habib, 2022. "Leveraging random forest in micro‐enterprises credit risk modelling for accuracy and interpretability," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3713-3729, July.
    20. Michal Karas & Mária Režòáková, 2021. "The role of financial constraint factors in predicting SME default," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 16(4), pages 859-883, December.
    21. McCann, Fergal & McIndoe-Calder, Tara, 2012. "Determinants of SME Loan Default: The Importance of Borrower-Level Heterogeneity," Research Technical Papers 06/RT/12, Central Bank of Ireland.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucd:wpaper:201120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Geary Tech (email available below). General contact details of provider: https://edirc.repec.org/data/geucdie.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.