IDEAS home Printed from https://ideas.repec.org/p/tse/wpaper/129798.html
   My bibliography  Save this paper

Invariant Coordinate Selection and Fisher Discriminant Subspace Beyond The Case of Two Groups

Author

Listed:
  • Becquart, Colombe
  • Archimbaud, Aurore
  • Ruiz-Gazen, Anne
  • Prilé, Luka
  • Nordhausen, Klaus

Abstract

Invariant Coordinate Selection (ICS) is a multivariate technique that relies on the simultaneous diagonalization of two scatter matrices. It serves various purposes, including its use as a dimension reduction tool prior to clustering or outlier detection. Unlike methods such as Principal Component Analysis, ICS has a theoretical foundation that explains why and when the identified subspace should contain relevant information. These general results have been examined in detail primarily for specific scatter combinations within a two-cluster framework. In this study, we expand these investigations to include more clusters and scatter combinations. The case of three clusters in particular is studied at length. Based on these expanded theoretical insights and supported by numerical studies, we conclude that ICS is indeed suitable for recovering Fisher’s discriminant subspace under very general settings and cases of failure seem rare.

Suggested Citation

  • Becquart, Colombe & Archimbaud, Aurore & Ruiz-Gazen, Anne & Prilé, Luka & Nordhausen, Klaus, 2024. "Invariant Coordinate Selection and Fisher Discriminant Subspace Beyond The Case of Two Groups," TSE Working Papers 24-1579, Toulouse School of Economics (TSE).
  • Handle: RePEc:tse:wpaper:129798
    as

    Download full text from publisher

    File URL: https://www.tse-fr.eu/sites/default/files/TSE/documents/doc/wp/2024/wp_tse_1579.pdf
    File Function: Full Text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alashwali, Fatimah & Kent, John T., 2016. "The use of a common location measure in the invariant coordinate selection and projection pursuit," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 145-161.
    2. Peña, Daniel & Prieto, Francisco J. & Viladomat, Júlia, 2010. "Eigenvectors of a kurtosis matrix as interesting directions to reveal cluster structure," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 1995-2007, October.
    3. Loperfido, Nicola, 2013. "Skewness and the linear discriminant function," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 93-99.
    4. Nordhausen, Klaus & Oja, Hannu & Tyler, David E., 2008. "Tools for Exploring Multivariate Data: The Package ICS," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i06).
    5. Klaus Nordhausen & David E. Tyler, 2015. "A cautionary note on robust covariance plug-in methods," Biometrika, Biometrika Trust, vol. 102(3), pages 573-588.
    6. Wei Luo & Bing Li, 2016. "Combining eigenvalues and variation of eigenvectors for order determination," Biometrika, Biometrika Trust, vol. 103(4), pages 875-887.
    7. Todorov, Valentin & Filzmoser, Peter, 2009. "An Object-Oriented Framework for Robust Multivariate Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i03).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nordhausen, Klaus & Ruiz-Gazen, Anne, 2022. "On the usage of joint diagonalization in multivariate statistics," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Archimbaud, Aurore & Nordhausen, Klaus & Ruiz-Gazen, Anne, 2018. "ICS for multivariate outlier detection with application to quality control," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 184-199.
    3. Nordhausen, Klaus & Oja, Hannu & Tyler, David E., 2022. "Asymptotic and bootstrap tests for subspace dimension," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    4. Loperfido, Nicola, 2021. "Some theoretical properties of two kurtosis matrices, with application to invariant coordinate selection," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    5. Alashwali, Fatimah & Kent, John T., 2016. "The use of a common location measure in the invariant coordinate selection and projection pursuit," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 145-161.
    6. Loperfido, Nicola, 2018. "Skewness-based projection pursuit: A computational approach," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 42-57.
    7. Jorge M. Arevalillo & Hilario Navarro, 2021. "Skewness-Kurtosis Model-Based Projection Pursuit with Application to Summarizing Gene Expression Data," Mathematics, MDPI, vol. 9(9), pages 1-18, April.
    8. Joni Virta & Niko Lietzén & Henri Nyberg, 2024. "Robust signal dimension estimation via SURE," Statistical Papers, Springer, vol. 65(5), pages 3007-3038, July.
    9. Dümbgen, Lutz & Nordhausen, Klaus & Schuhmacher, Heike, 2016. "New algorithms for M-estimation of multivariate scatter and location," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 200-217.
    10. Nicola Loperfido, 2023. "Kurtosis removal for data pre-processing," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 239-267, March.
    11. Loperfido, Nicola, 2014. "A note on the fourth cumulant of a finite mixture distribution," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 386-394.
    12. Sreenivasa Rao Jammalamadaka & Emanuele Taufer & György H. Terdik, 2021. "Asymptotic theory for statistics based on cumulant vectors with applications," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 708-728, June.
    13. Steffen Liebscher & Thomas Kirschstein, 2015. "Efficiency of the pMST and RDELA location and scatter estimators," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(1), pages 63-82, January.
    14. Loperfido, Nicola, 2014. "Linear transformations to symmetry," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 186-192.
    15. Fischer, Daniel & Berro, Alain & Nordhausen, Klaus & Ruiz-Gazen, Anne, 2019. "REPPlab: An R package for detecting clusters and outliers using exploratory projection pursuit," TSE Working Papers 19-1001, Toulouse School of Economics (TSE).
    16. B. Barış Alkan, 2016. "Robust Principal Component Analysis Based on Modified Minimum Covariance Determinant in the Presence of Outliers," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 4(2), pages 85-94, September.
    17. Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    18. M. Hubert & P. Rousseeuw & K. Vakili, 2014. "Shape bias of robust covariance estimators: an empirical study," Statistical Papers, Springer, vol. 55(1), pages 15-28, February.
    19. Jari Miettinen & Markus Matilainen & Klaus Nordhausen & Sara Taskinen, 2020. "Extracting Conditionally Heteroskedastic Components using Independent Component Analysis," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 293-311, March.
    20. Hayley Randall & Andreas Artemiou & Xingye Qiao, 2021. "Sufficient dimension reduction based on distance‐weighted discrimination," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1186-1211, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tse:wpaper:129798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tsetofr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.