IDEAS home Printed from https://ideas.repec.org/p/toh/dssraa/142.html
   My bibliography  Save this paper

The role of prosociality and social capital in changes in subjective well-being during the COVID-19 pandemic

Author

Listed:
  • Yuta Kuroda
  • Takaki Sato
  • Yasumasa Matsuda

Abstract

This study examines the role of local social capital, individual personality, and their interaction on changes in subjective well-being (SWB) during the COVID-19 pandemic. Our estimations use tracking panel data based on a unique survey of approximately 25,000 people in Japan from 2019 to 2022. The results show that before the pandemic, individuals with high prosociality had higher SWB, whereas individuals with low and moderate levels of prosociality had no significant difference in SWB. Additionally, the relationship between individual prosociality and local social capital did not affect SWB. However, after the pandemic, the SWB of non-prosocial individuals changed heterogeneously depending on the level of local social capital. Non-prosocial individuals in areas with high social capital showed little change in SWB, whereas non-prosocial individuals in areas with low social capital showed significantly decreased SWB. These results may be caused by the possibility of free-riding on the reduced risk of infection due to the preventive actions of others in areas with high social capital.

Suggested Citation

  • Yuta Kuroda & Takaki Sato & Yasumasa Matsuda, 2024. "The role of prosociality and social capital in changes in subjective well-being during the COVID-19 pandemic," DSSR Discussion Papers 142, Graduate School of Economics and Management, Tohoku University.
  • Handle: RePEc:toh:dssraa:142
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10097/0002001327
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He, Changli & Teräsvirta, Timo, 2004. "An Extended Constant Conditional Correlation Garch Model And Its Fourth-Moment Structure," Econometric Theory, Cambridge University Press, vol. 20(5), pages 904-926, October.
    2. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    3. Carol Alexander, 2000. "Orthogonal Methods for Generating Large Positive Semi-Definite Covariance Matrices," ICMA Centre Discussion Papers in Finance icma-dp2000-06, Henley Business School, University of Reading.
    4. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    5. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hautsch, Nikolaus & Kyj, Lada. M. & Malec, Peter, 2013. "Do high-frequency data improve high-dimensional portfolio allocations?," SFB 649 Discussion Papers 2013-014, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    2. Marshall, Andrew & Maulana, Tubagus & Tang, Leilei, 2009. "The estimation and determinants of emerging market country risk and the dynamic conditional correlation GARCH model," International Review of Financial Analysis, Elsevier, vol. 18(5), pages 250-259, December.
    3. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    4. Panayiotis F. Diamandis & Anastassios A. Drakos & Georgios P. Kouretas & Leonidas P. Zarangas, 2012. "Asset allocation in the Athens stock exchange: a variance sensitivity analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 17(2), pages 167-181, April.
    5. Silvennoinen, Annastiina & Teräsvirta, Timo, 2007. "Multivariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 669, Stockholm School of Economics, revised 18 Jan 2008.
    6. Wolfgang Karl Hardle & Elena Silyakova, 2020. "Implied Basket Correlation Dynamics," Papers 2009.09770, arXiv.org.
    7. Härdle Wolfgang Karl & Silyakova Elena, 2016. "Implied basket correlation dynamics," Statistics & Risk Modeling, De Gruyter, vol. 33(1-2), pages 1-20, September.
    8. Farhat Iqbal, 2013. "Robust estimation of the simplified multivariate GARCH model," Empirical Economics, Springer, vol. 44(3), pages 1353-1372, June.
    9. Wolfgang Karl Härdle & Elena Silyakova, 2012. "Implied Basket Correlation Dynamics," SFB 649 Discussion Papers SFB649DP2012-066, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    10. Nikolaus Hautsch & Lada M. Kyj & Peter Malec, 2015. "Do High‐Frequency Data Improve High‐Dimensional Portfolio Allocations?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 263-290, March.
    11. Härdle, Wolfgang Karl & Silyakova, Elena, 2012. "Implied basket correlation dynamics," SFB 649 Discussion Papers 2012-066, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Nadine McCloud & Yongmiao Hong, 2011. "Testing The Structure Of Conditional Correlations In Multivariate Garch Models: A Generalized Cross‐Spectrum Approach," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(4), pages 991-1037, November.
    13. Han, Chulwoo & Park, Frank C., 2022. "A geometric framework for covariance dynamics," Journal of Banking & Finance, Elsevier, vol. 134(C).
    14. Anders Johansson, 2009. "An analysis of dynamic risk in the Greater China equity markets," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 7(3), pages 299-320.
    15. Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2015. "Testing for structural breaks in correlations: Does it improve Value-at-Risk forecasting?," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 135-152.
    16. Turan G. Bali & Robert F. Engle & Yi Tang, 2017. "Dynamic Conditional Beta Is Alive and Well in the Cross Section of Daily Stock Returns," Management Science, INFORMS, vol. 63(11), pages 3760-3779, November.
    17. M. Hashem Pesaran & Paolo Zaffaroni, 2004. "Model Averaging and Value-at-Risk Based Evaluation of Large Multi Asset Volatility Models for Risk Management," CESifo Working Paper Series 1358, CESifo.
    18. Abu S. Amin & Lucjan T. Orlowski, 2014. "Returns, Volatilities, and Correlations Across Mature, Regional, and Frontier Markets: Evidence from South Asia," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 50(3), pages 5-27, May.
    19. Chia-Lin Chang & Yiying Li & Michael McAleer, 2018. "Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice," Energies, MDPI, vol. 11(6), pages 1-19, June.
    20. Chia-Lin Chang & Michael McAleer & Yu-Ann Wang, 2018. "Latent Volatility Granger Causality and Spillovers in Renewable Energy and Crude Oil ETFs," Documentos de Trabajo del ICAE 2018-15, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:toh:dssraa:142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tohoku University Library (email available below). General contact details of provider: https://edirc.repec.org/data/fetohjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.