IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2009cf675.html
   My bibliography  Save this paper

Modelling Conditional Correlations in the Volatility of Asian Rubber Spot and Futures Returns

Author

Listed:
  • Tanchanok Khamkaew

    (Faculty of Economics, Maejo University)

  • Roengchai Tansuchat

    (Faculty of Economics, Maejo University)

  • Chia-Lin Chang

    (Department of Applied Economics, National Chung Hsing University)

  • Michael McAleer

    (Econometric Institute, Erasmus School of Economics, Erasmus University Rotterdam and Tinbergen Institute and Center for International Research on the Japanese Economy (CIRJE), Faculty of Economics, University of Tokyo)

Abstract

Asia is presently the most important market for the production and consumption of natural rubber. World prices of rubber are not only subject to changes in demand, but also to speculation regarding future markets. Japan and Singapore are the major futures markets for rubber, while Thailand is one of the world's largest producers of rubber. As rubber prices are influenced by external markets, it is important to analyse the relationship between the relevant markets in Thailand, Japan and Singapore. The analysis is conducted using several alternative multivariate GARCH models. The empirical results indicate that the constant conditional correlations arising from the CCC model of Bollerslev (1990) lie in the low to medium range. The results from the VARMA-GARCH model of Ling and McAleer (2003) and the VARMA-AGARCH model of McAleer et al. (2009) suggest the presence of volatility spillovers and asymmetric effects of positive and negative return shocks on conditional volatility. Finally, the DCC model of Engle (2002) suggests that the conditional correlations can vary dramatically over time. In general, the dynamic conditional correlations in rubber spot and futures returns shocks can be independent or interdependent.

Suggested Citation

  • Tanchanok Khamkaew & Roengchai Tansuchat & Chia-Lin Chang & Michael McAleer, 2009. "Modelling Conditional Correlations in the Volatility of Asian Rubber Spot and Futures Returns," CIRJE F-Series CIRJE-F-675, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2009cf675
    as

    Download full text from publisher

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2009/2009cf675.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(2), pages 280-310, April.
    2. McAleer, Michael, 2005. "Automated Inference And Learning In Modeling Financial Volatility," Econometric Theory, Cambridge University Press, vol. 21(1), pages 232-261, February.
    3. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    4. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    5. Michael McAleer & Suhejla Hoti & Felix Chan, 2009. "Structure and Asymptotic Theory for Multivariate Asymmetric Conditional Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 28(5), pages 422-440.
    6. Nicholas Apergis & Anthony Rezitis, 2003. "Food price volatility and macroeconomic factor volatility: 'heat waves' or 'meteor showers'?," Applied Economics Letters, Taylor & Francis Journals, vol. 10(3), pages 155-160.
    7. Jae H. Kim & Hristos Doucouliagos, 2005. "Realized Volatility and Correlation in Grain Futures Markets: Testing for Spill-Over Effects," Monash Econometrics and Business Statistics Working Papers 22/05, Monash University, Department of Econometrics and Business Statistics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chi-Wei Su & Lu Liu & Ran Tao & Oana-Ramona Lobonţ, 2019. "Do natural rubber price bubbles occur?," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 65(2), pages 67-73.
    2. Iwatsubo, Kentaro & Watkins, Clinton, 2020. "Who influences the fundamental value of commodity futures in Japan?," International Review of Financial Analysis, Elsevier, vol. 67(C).
    3. Chang, C-L. & McAleer, M.J. & Tansuchat, R., 2009. "Modelling conditional correlations for risk diversification in crude oil markets," Econometric Institute Research Papers EI 2009-11, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Tao, Juan & Green, Christopher J., 2012. "Asymmetries, causality and correlation between FTSE100 spot and futures: A DCC-TGARCH-M analysis," International Review of Financial Analysis, Elsevier, vol. 24(C), pages 26-37.
    5. Khalfaoui, R & Boutahar, M, 2012. "Portfolio risk evaluation: An approach based on dynamic conditional correlations models and wavelet multiresolution analysis," MPRA Paper 41624, University Library of Munich, Germany.
    6. Yen-Hsien Lee & Hao Fang & Wei-Fan SU, 2014. "Effectiveness of Portfolio Diversification and the Dynamic Relationship between Stock and Currency Markets in the Emerging Eastern European and Russian Markets," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 64(4), pages 296-311, September.
    7. Yen-Hsien Lee, 2014. "An international analysis of REITs and stock portfolio management based on dynamic conditional correlation models," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 28(2), pages 165-180, May.
    8. Konstantinos N. Baltas & Robert Mann & Nicholaos C. Baltas, 2024. "The COVID-19 Pandemic and Unsustainable PPE Materials: A Correlation and Causality Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(6), pages 1651-1671, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chia-Lin Chang & Yiying Li & Michael McAleer, 2018. "Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice," Energies, MDPI, vol. 11(6), pages 1-19, June.
    2. Asai, Manabu & McAleer, Michael, 2008. "A Portfolio Index GARCH model," International Journal of Forecasting, Elsevier, vol. 24(3), pages 449-461.
    3. Chang, Chia-Lin & McAleer, Michael & Wang, Yanghuiting, 2018. "Testing Co-Volatility spillovers for natural gas spot, futures and ETF spot using dynamic conditional covariances," Energy, Elsevier, vol. 151(C), pages 984-997.
    4. Chia-Lin Chang & Michael McAleer & Jiarong Tian, 2019. "Modeling and Testing Volatility Spillovers in Oil and Financial Markets for the USA, the UK, and China," Energies, MDPI, vol. 12(8), pages 1-24, April.
    5. Chang, Chia-Lin & González-Serrano, Lydia & Jimenez-Martin, Juan-Angel, 2013. "Currency hedging strategies using dynamic multivariate GARCH," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 164-182.
    6. Abdul Hakim & Michael McAleer, 2009. "VaR Forecasts and Dynamic Conditional Correlations for Spot and Futures Returns on Stocks and Bonds," CARF F-Series CARF-F-178, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    7. Afees A. Salisu & Kazeem Isah, 2017. "Modeling the spillovers between stock market and money market in Nigeria," Working Papers 023, Centre for Econometric and Allied Research, University of Ibadan.
    8. Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2018. "Connecting VIX and Stock Index ETF with VAR and Diagonal BEKK," JRFM, MDPI, vol. 11(4), pages 1-25, September.
    9. Massimiliano Caporin & Michael McAleer, 2011. "Thresholds, news impact surfaces and dynamic asymmetric multivariate GARCH," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(2), pages 125-163, May.
    10. Hakim, M.S. & McAleer, M.J., 2009. "Dynamic Conditional Correlations in International Stock, Bond and Foreign Exchange Markets: Emerging Markets Evidence," Econometric Institute Research Papers EI 2009-33, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    11. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2011. "Crude oil hedging strategies using dynamic multivariate GARCH," Energy Economics, Elsevier, vol. 33(5), pages 912-923, September.
    12. Michael McAleer, 2009. "The Ten Commandments For Optimizing Value‐At‐Risk And Daily Capital Charges," Journal of Economic Surveys, Wiley Blackwell, vol. 23(5), pages 831-849, December.
    13. Caporin, Massimiliano & Jimenez-Martin, Juan-Angel & Gonzalez-Serrano, Lydia, 2014. "Currency hedging strategies in strategic benchmarks and the global and Euro sovereign financial crises," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 31(C), pages 159-177.
    14. Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2016. "Connecting VIX and Stock Index ETF," Tinbergen Institute Discussion Papers 16-010/III, Tinbergen Institute, revised 23 Jan 2017.
    15. Chia-Lin Chang & Michael McAleer & Roengchai Tansuchat, 2009. "Modelling Conditional Correlations for Risk Diversification in Crude Oil Markets," CIRJE F-Series CIRJE-F-640, CIRJE, Faculty of Economics, University of Tokyo.
    16. Chang, C-L. & Hsieh, T-L. & McAleer, M.J., 2016. "How are VIX and Stock Index ETF Related?," Econometric Institute Research Papers EI2016-07, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    17. Chia-Lin Chang & Michael McAleer & Chien-Hsun Wang, 2017. "An Econometric Analysis of ETF and ETF Futures in Financial and Energy Markets Using Generated Regressors," IJFS, MDPI, vol. 6(1), pages 1-24, December.
    18. Hsu, Shu-Han & Sheu, Chwen & Yoon, Jiho, 2021. "Risk spillovers between cryptocurrencies and traditional currencies and gold under different global economic conditions," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    19. Chia-Lin Chang & Chia-Ping Liu & Michael McAleer, 2016. "Volatility Spillovers for Spot, Futures, and ETF Prices in Energy and Agriculture," Tinbergen Institute Discussion Papers 16-046/III, Tinbergen Institute.
    20. Chia-Lin Chang & Shu-Han Hsu & Michael McAleer, 2018. "Risk Spillovers in Returns for Chinese and International Tourists to Taiwan," Tinbergen Institute Discussion Papers 18-031/III, Tinbergen Institute.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • Q14 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Finance

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2009cf675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CIRJE administrative office (email available below). General contact details of provider: https://edirc.repec.org/data/ritokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.