IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2007cf503.html
   My bibliography  Save this paper

The Conditional Limited Information Maximum Likelihood Approach to Dynamic Panel Structural Equations

Author

Listed:
  • Naoto Kunitomo

    (Faculty of Economics, University of Tokyo)

  • Kentaro Akashi

    (Graduate School of Economics, University of Tokyo)

Abstract

We propose the conditional limited information maximum likelihood (CLIML) approach for estimating dynamic panel structural equation models. When there are dynamic effects and endogenous variables with individual effects at the same time, the CLIML estimation method for the doubly-filtered data does give not only a consistent estimation, but also it attains the asymptotic efficiency when the number of orthogonal condition is large. Our formulation includes Alvarez and Arellano (2003), Blundell and Bond (2000) and other linear dynamic panel models as special cases.

Suggested Citation

  • Naoto Kunitomo & Kentaro Akashi, 2007. "The Conditional Limited Information Maximum Likelihood Approach to Dynamic Panel Structural Equations," CIRJE F-Series CIRJE-F-503, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2007cf503
    as

    Download full text from publisher

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2007/2007cf503.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Javier Alvarez & Manuel Arellano, 2003. "The Time Series and Cross-Section Asymptotics of Dynamic Panel Data Estimators," Econometrica, Econometric Society, vol. 71(4), pages 1121-1159, July.
    2. Richard Blundell & Stephen Bond, 2000. "GMM Estimation with persistent panel data: an application to production functions," Econometric Reviews, Taylor & Francis Journals, vol. 19(3), pages 321-340.
    3. Kazuhiko Hayakawa, 2006. "Efficient GMM Estimation of Dynamic Panel Data Models Where Large Heterogeneity May Be Present," Hi-Stat Discussion Paper Series d05-130, Institute of Economic Research, Hitotsubashi University.
    4. T. W. Anderson & Naoto Kunitomo & Yukitoshi Matsushita, 2006. "A New Light from Old Wisdoms : Alternative Estimation Methods of Simultaneous Equations with Possibly Many Instruments," CIRJE F-Series CIRJE-F-399, CIRJE, Faculty of Economics, University of Tokyo.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kentaro Akashi & Naoto Kunitomo, 2010. "The Limited Information Maximum Likelihood Approach to Dynamic Panel Structural Equations," CIRJE F-Series CIRJE-F-708, CIRJE, Faculty of Economics, University of Tokyo.
    2. Kazuhiko Hayakawa, 2006. "The Asymptotic Properties of the System GMM Estimator in Dynamic Panel Data Models When Both N and T are Large," Hi-Stat Discussion Paper Series d05-129, Institute of Economic Research, Hitotsubashi University.
    3. Akashi, Kentaro & Kunitomo, Naoto, 2012. "Some properties of the LIML estimator in a dynamic panel structural equation," Journal of Econometrics, Elsevier, vol. 166(2), pages 167-183.
    4. Kentaro Akashi & Naoto Kunitomo, 2015. "The limited information maximum likelihood approach to dynamic panel structural equation models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 39-73, February.
    5. Abonazel, Mohamed R., 2016. "Bias Correction Methods for Dynamic Panel Data Models with Fixed Effects," MPRA Paper 70628, University Library of Munich, Germany.
    6. Maurice J.G. Bun & Sarafidis, V., 2013. "Dynamic Panel Data Models," UvA-Econometrics Working Papers 13-01, Universiteit van Amsterdam, Dept. of Econometrics.
    7. Christian Merkl & Stephanie Stolz, 2009. "Banks' regulatory buffers, liquidity networks and monetary policy transmission," Applied Economics, Taylor & Francis Journals, vol. 41(16), pages 2013-2024.
    8. Mayer, Alexander, 2022. "On the local power of some tests of strict exogeneity in linear fixed effects models," Econometrics and Statistics, Elsevier, vol. 24(C), pages 49-74.
    9. Kruiniger, Hugo, 2013. "Quasi ML estimation of the panel AR(1) model with arbitrary initial conditions," Journal of Econometrics, Elsevier, vol. 173(2), pages 175-188.
    10. Badi H. Baltagi, 2021. "Dynamic Panel Data Models," Springer Texts in Business and Economics, in: Econometric Analysis of Panel Data, edition 6, chapter 0, pages 187-228, Springer.
    11. Bao, Yong & Yu, Xuewen, 2023. "Indirect inference estimation of dynamic panel data models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1027-1053.
    12. Naoto Kunitomo & Kentaro Akashi, 2010. "An Aysmptotically Optimal Modification of the Panel LIML Estimation for Individual Heteroscedasticity," CIRJE F-Series CIRJE-F-780, CIRJE, Faculty of Economics, University of Tokyo.
    13. Giovanni Favara & Jean Imbs, 2015. "Credit Supply and the Price of Housing," American Economic Review, American Economic Association, vol. 105(3), pages 958-992, March.
    14. Hayakawa, Kazuhiko, 2007. "Small sample bias properties of the system GMM estimator in dynamic panel data models," Economics Letters, Elsevier, vol. 95(1), pages 32-38, April.
    15. Badri Narayanan G., 2005. "Effects of Trade liberalisation, Environmental and Labour Regulations on Employment in India's Organised Textile Sector," Labor Economics Working Papers 22363, East Asian Bureau of Economic Research.
    16. Maria Elena Bontempi & Jan Ditzen, 2023. "GMM-lev estimation and individual heterogeneity: Monte Carlo evidence and empirical applications," Papers 2312.00399, arXiv.org, revised Dec 2023.
    17. Milda Norkuté & Vasilis Sarafidis & Takashi Yamagata, 2018. "Instrumental Variable Estimation of Dynamic Linear Panel Data Models with Defactored Regressors and a Multifactor Error Structure," ISER Discussion Paper 1019, Institute of Social and Economic Research, Osaka University.
    18. Moscone, Francesco & Tosetti, Elisa & Canepa, Alessandra, 2014. "Real estate market and financial stability in US metropolitan areas: A dynamic model with spatial effects," Regional Science and Urban Economics, Elsevier, vol. 49(C), pages 129-146.
    19. Fritsch, Markus, 2019. "On GMM estimation of linear dynamic panel data models," Passauer Diskussionspapiere, Betriebswirtschaftliche Reihe B-36-19, University of Passau, Faculty of Business and Economics.
    20. Daron Acemoglu & Suresh Naidu & Pascual Restrepo & James A. Robinson, 2013. "Democracy, Redistribution and Inequality," NBER Working Papers 19746, National Bureau of Economic Research, Inc.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2007cf503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CIRJE administrative office (email available below). General contact details of provider: https://edirc.repec.org/data/ritokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.