IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2007cf467.html
   My bibliography  Save this paper

t-Tests in a Structural Equation with Many Instruments

Author

Listed:
  • Yukitoshi Matsushita

    (CIRJE, Faculty of Economics, University of Tokyo)

Abstract

This paper studies the properties of t-ratios associated with the limited information maximum likelihood (LIML) estimators in a structural form estimation when the number of instrumental variables is large. Asymptotic expansions are made of the distributions of a large K t-ratio statistic under large-Kn asymptotics. A modified t-ratio statistic is proposed from the asymptotic expansion. The power of the large K t-ratio test dominates the AR test, the K-test by Kleibergen (2002), and the conditional LR test by Moreira (2003); and the difference can be substantial when the instruments are weak.

Suggested Citation

  • Yukitoshi Matsushita, 2007. "t-Tests in a Structural Equation with Many Instruments," CIRJE F-Series CIRJE-F-467, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2007cf467
    as

    Download full text from publisher

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2007/2007cf467.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fujikoshi, Yasunori & Morimune, Kimio & Kunitomo, Naoto & Taniguchi, Masanobu, 1982. "Asymptotic expansions of the distributions of the estimates of coefficients in a simultaneous equation system," Journal of Econometrics, Elsevier, vol. 18(2), pages 191-205, February.
    2. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, July.
    3. Donald W. K. Andrews & Marcelo J. Moreira & James H. Stock, 2006. "Optimal Two-Sided Invariant Similar Tests for Instrumental Variables Regression," Econometrica, Econometric Society, vol. 74(3), pages 715-752, May.
    4. Morimune, Kimio, 1983. "Approximate Distributions of k-Class Estimators When the Degree of Overidentifiability Is Large Compared with the Sample Size," Econometrica, Econometric Society, vol. 51(3), pages 821-841, May.
    5. Theodore W. Anderson & Naoto Kunijtomo & Yukitoshi Matsushita, 2005. "A New Light from Old Wisdoms : Alternative Estimation Methods of Simultaneous Equations and Microeconometric Models," CIRJE F-Series CIRJE-F-321, CIRJE, Faculty of Economics, University of Tokyo.
    6. Naoto Kunitomo & Yukitoshi Matsushita, 2003. "On Finite Sample Distributions of the Empirical Likelihood Estimator and the GMM Estimator," CIRJE F-Series CIRJE-F-200, CIRJE, Faculty of Economics, University of Tokyo.
    7. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
    8. Frank Kleibergen, 2005. "Testing Parameters in GMM Without Assuming that They Are Identified," Econometrica, Econometric Society, vol. 73(4), pages 1103-1123, July.
    9. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-681, May.
    10. Morimune, Kimio, 1989. "Test in a Structural Equation," Econometrica, Econometric Society, vol. 57(6), pages 1341-1360, November.
    11. Naoto Kunitomo & Yukitoshi Matsushita, 2003. "Asymptotic Expansions of the Distributions of Semi-Parametric Estimators in a Linear Simultaneous Equations System," CIRJE F-Series CIRJE-F-237, CIRJE, Faculty of Economics, University of Tokyo.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. T. W. Anderson & Naoto Kunitomo & Yukitoshi Matsushita, 2008. "On the Asymptotic Optimality of the LIML Estimator with Possibly Many Instruments," CIRJE F-Series CIRJE-F-542, CIRJE, Faculty of Economics, University of Tokyo.
    2. Anderson, T.W. & Kunitomo, Naoto & Matsushita, Yukitoshi, 2010. "On the asymptotic optimality of the LIML estimator with possibly many instruments," Journal of Econometrics, Elsevier, vol. 157(2), pages 191-204, August.
    3. Naoto Kunitomo & Yukitoshi Matsushita, 2008. "Improving the Rank-Adjusted Anderson-Rubin Test with Many Instruments and Persistent Heteroscedasticity," CIRJE F-Series CIRJE-F-588, CIRJE, Faculty of Economics, University of Tokyo.
    4. Yukitoshi Matsushita, 2007. "Approximate Distributions of the Likelihood Ratio Statistic in a Structural Equation with Many Instruments," CIRJE F-Series CIRJE-F-466, CIRJE, Faculty of Economics, University of Tokyo.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yukitoshi Matsushita, 2007. "Approximate Distributions of the Likelihood Ratio Statistic in a Structural Equation with Many Instruments," CIRJE F-Series CIRJE-F-466, CIRJE, Faculty of Economics, University of Tokyo.
    2. Matsushita, Yukitoshi & Otsu, Taisuke, 2024. "A jackknife Lagrange multiplier test with many weak instruments," LSE Research Online Documents on Economics 116392, London School of Economics and Political Science, LSE Library.
    3. T. W. Anderson & Naoto Kunitomo & Yukitoshi Matsushita, 2008. "On Finite Sample Properties of Alternative Estimators of Coefficients in a Structural Equation with Many Instruments," CIRJE F-Series CIRJE-F-577, CIRJE, Faculty of Economics, University of Tokyo.
    4. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    5. T. W. Anderson & Naoto Kunitomo & Yukitoshi Matsushita, 2006. "A New Light from Old Wisdoms : Alternative Estimation Methods of Simultaneous Equations with Possibly Many Instruments," CIRJE F-Series CIRJE-F-399, CIRJE, Faculty of Economics, University of Tokyo.
    6. Anderson, T.W. & Kunitomo, Naoto & Matsushita, Yukitoshi, 2011. "On finite sample properties of alternative estimators of coefficients in a structural equation with many instruments," Journal of Econometrics, Elsevier, vol. 165(1), pages 58-69.
    7. Lim, Dennis & Wang, Wenjie & Zhang, Yichong, 2024. "A conditional linear combination test with many weak instruments," Journal of Econometrics, Elsevier, vol. 238(2).
    8. James L. Powell, 2017. "Identification and Asymptotic Approximations: Three Examples of Progress in Econometric Theory," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 107-124, Spring.
    9. Yukitoshi Matsushita & Taisuke Otsu, 2020. "Second-order refinements for t-ratios with many instruments," STICERD - Econometrics Paper Series 612, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    10. Tom Boot & Johannes W. Ligtenberg, 2023. "Identification- and many instrument-robust inference via invariant moment conditions," Papers 2303.07822, arXiv.org, revised Sep 2023.
    11. Dennis Lim & Wenjie Wang & Yichong Zhang, 2022. "A Conditional Linear Combination Test with Many Weak Instruments," Papers 2207.11137, arXiv.org, revised Apr 2023.
    12. Manu Navjeevan, 2023. "An Identification and Dimensionality Robust Test for Instrumental Variables Models," Papers 2311.14892, arXiv.org, revised Dec 2024.
    13. Carlos Velasco & Xuexin Wang, 2021. "Instrumental variable estimation via a continuum of instruments with an application to estimating the elasticity of intertemporal substitution in consumption," Working Papers 2024-09-06, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    14. Antoine, Bertille & Lavergne, Pascal, 2023. "Identification-robust nonparametric inference in a linear IV model," Journal of Econometrics, Elsevier, vol. 235(1), pages 1-24.
    15. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    16. Jean-Thomas Bernard & Ba Chu & Lynda Khalaf & Marcel Voia, 2019. "Non-Standard Confidence Sets for Ratios and Tipping Points with Applications to Dynamic Panel Data," Annals of Economics and Statistics, GENES, issue 134, pages 79-108.
    17. Kleibergen, Frank, 2021. "Efficient size correct subset inference in homoskedastic linear instrumental variables regression," Journal of Econometrics, Elsevier, vol. 221(1), pages 78-96.
    18. Wang, Wenjie, 2021. "Wild Bootstrap for Instrumental Variables Regression with Weak Instruments and Few Clusters," MPRA Paper 106227, University Library of Munich, Germany.
    19. Crudu, Federico & Mellace, Giovanni & Sándor, Zsolt, 2021. "Inference In Instrumental Variable Models With Heteroskedasticity And Many Instruments," Econometric Theory, Cambridge University Press, vol. 37(2), pages 281-310, April.
    20. Norman R. Swanson & John C. Chao, 2004. "Estimation and Testing Using Jackknife IV in Heteroskedastic Regressions with Many Weak Instruments," Econometric Society 2004 Far Eastern Meetings 668, Econometric Society.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2007cf467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CIRJE administrative office (email available below). General contact details of provider: https://edirc.repec.org/data/ritokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.