IDEAS home Printed from https://ideas.repec.org/p/tiu/tiutis/cc3993d0-e59d-408d-9ba0-4105550cc509.html
   My bibliography  Save this paper

Sources of identifying information in evaluation models

Author

Listed:
  • Angrist, J.D.
  • Imbens, G.W.

    (Tilburg University, School of Economics and Management)

Abstract

The average effect of social programs on outcomes such as earnings is a parameter of primary interest in econometric evaluations studies. New results on using exclusion restrictions to identify and estimate average treatment effects are presented. Identification is achieved given a minimum of parametric assumptions, initially without reference to a latent index framework. Most econometric analyses of evaluation models motivate identifying assumptions using models of individual behavior. Our technical conditions do not fit easily into a conventional discrete choice framework, rather they fit into a framework where the source of identifying information is institutional knowledge regarding program administration. This framework also suggests an attractive experimental design for research using human subjects, in which eligible participants need not be denied treatment. We present a simple instrumental variables estimator for the average effect of treatment on program participants, and show that the estimator attains Chamberlain's semi-parametric efficiency bound. The bias of estimators that satisfy only exclusion restrictions is also considered.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Angrist, J.D. & Imbens, G.W., 1991. "Sources of identifying information in evaluation models," Other publications TiSEM cc3993d0-e59d-408d-9ba0-4, Tilburg University, School of Economics and Management.
  • Handle: RePEc:tiu:tiutis:cc3993d0-e59d-408d-9ba0-4105550cc509
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/1151886/JDAGWI5621675.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Angrist, J.D., 1991. "Linear Instrumental Variables Estimation Of Average Treatment Effects In Nonlinear Models," Harvard Institute of Economic Research Working Papers 1542, Harvard - Institute of Economic Research.
    2. Angrist, Joshua D, 1990. "Lifetime Earnings and the Vietnam Era Draft Lottery: Evidence from Social Security Administrative Records," American Economic Review, American Economic Association, vol. 80(3), pages 313-336, June.
    3. Gronau, Reuben, 1974. "Wage Comparisons-A Selectivity Bias," Journal of Political Economy, University of Chicago Press, vol. 82(6), pages 1119-1143, Nov.-Dec..
    4. repec:eee:labchp:v:2:y:1986:i:c:p:1139-1181 is not listed on IDEAS
    5. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-620, September.
    6. Joshua Angrist & Alan Krueger, 1990. "Does Compulsory School Attendance Affect Schooling and Earnings?," Working Papers 653, Princeton University, Department of Economics, Industrial Relations Section..
    7. Newey, Whitney K, 1990. "Efficient Instrumental Variables Estimation of Nonlinear Models," Econometrica, Econometric Society, vol. 58(4), pages 809-837, July.
    8. repec:fth:prinin:273 is not listed on IDEAS
    9. Angrist, Joshua D, 1990. "Lifetime Earnings and the Vietnam Era Draft Lottery: Evidence from Social Security Administrative Records: Errata," American Economic Review, American Economic Association, vol. 80(5), pages 1284-1286, December.
    10. Joshua D. Angrist & Alan B. Keueger, 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(4), pages 979-1014.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido W. Imbens, 2022. "Causality in Econometrics: Choice vs Chance," Econometrica, Econometric Society, vol. 90(6), pages 2541-2566, November.
    2. Peter Hull & Michal Kolesár & Christopher Walters, 2022. "Labor by design: contributions of David Card, Joshua Angrist, and Guido Imbens," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(3), pages 603-645, July.
    3. Rafael Di Tella & Ernesto Schargrodsky, 2004. "Do Police Reduce Crime? Estimates Using the Allocation of Police Forces After a Terrorist Attack," American Economic Review, American Economic Association, vol. 94(1), pages 115-133, March.
    4. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    5. Joshua D. Angrist, 2022. "Empirical Strategies in Economics: Illuminating the Path From Cause to Effect," Econometrica, Econometric Society, vol. 90(6), pages 2509-2539, November.
    6. van der Klaauw, Bas, 2014. "From micro data to causality: Forty years of empirical labor economics," Labour Economics, Elsevier, vol. 30(C), pages 88-97.
    7. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    8. Anna Piil Damm, 2009. "Ethnic Enclaves and Immigrant Labor Market Outcomes: Quasi-Experimental Evidence," Journal of Labor Economics, University of Chicago Press, vol. 27(2), pages 281-314, April.
    9. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    10. Joshua D. Angrist & Jörn-Steffen Pischke, 2010. "The Credibility Revolution in Empirical Economics: How Better Research Design Is Taking the Con out of Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 24(2), pages 3-30, Spring.
    11. repec:zbw:rwidps:0023 is not listed on IDEAS
    12. Markus Frölich, 2004. "Programme Evaluation with Multiple Treatments," Journal of Economic Surveys, Wiley Blackwell, vol. 18(2), pages 181-224, April.
    13. Robert Moffitt, 1991. "Program Evaluation With Nonexperimental Data," Evaluation Review, , vol. 15(3), pages 291-314, June.
    14. Paul A. Bekker & Jan van der Ploeg, 2000. "Instrumental Variable Estimation Based on Grouped Data," Econometric Society World Congress 2000 Contributed Papers 1862, Econometric Society.
    15. Duflo, Esther & Glennerster, Rachel & Kremer, Michael, 2008. "Using Randomization in Development Economics Research: A Toolkit," Handbook of Development Economics, in: T. Paul Schultz & John A. Strauss (ed.), Handbook of Development Economics, edition 1, volume 4, chapter 61, pages 3895-3962, Elsevier.
    16. Devereux, Paul J., 2007. "Improved Errors-in-Variables Estimators for Grouped Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 278-287, July.
    17. Wang, Wenjie & Zhang, Yichong, 2024. "Wild bootstrap inference for instrumental variables regressions with weak and few clusters," Journal of Econometrics, Elsevier, vol. 241(1).
    18. Angrist, Joshua & Kolesár, Michal, 2024. "One instrument to rule them all: The bias and coverage of just-ID IV," Journal of Econometrics, Elsevier, vol. 240(2).
    19. Mazzutti, Caio Cícero Toledo Piza da Costa, 2016. "Three essays on the causal impacts of child labour laws in Brazil," Economics PhD Theses 0616, Department of Economics, University of Sussex Business School.
    20. Kevin F. Hallock, 2013. "Data Improvement and Labor Economics," Journal of Labor Economics, University of Chicago Press, vol. 31(S1), pages 1-16.
    21. Meyer, Bruce D, 1995. "Natural and Quasi-experiments in Economics," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(2), pages 151-161, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiutis:cc3993d0-e59d-408d-9ba0-4105550cc509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: https://www.tilburguniversity.edu/about/schools/economics-and-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.