IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20240066.html
   My bibliography  Save this paper

Mitigating Estimation Risk: a Data-Driven Fusion of Experimental and Observational Data

Author

Listed:
  • Francisco Blasques

    (Vrije Universiteit Amsterdam and Tinbergen Institute)

  • Paolo Gorgi

    (Vrije Universiteit Amsterdam and Tinbergen Institute)

  • Siem Jan Koopman

    (Vrije Universiteit Amsterdam and Tinbergen Institute)

  • Noah Stegehuis

    (Vrije Universiteit Amsterdam and Tinbergen Institute)

Abstract

The identification of causal effects of marketing campaigns (advertisements, discounts, promotions, loyalty programs) require the collection of experimental data. Such data sets frequently suffer from limited sample sizes due to constraints (time, budget) which can result in imprecise estimators and inconclusive outcomes. At the same time, companies passively accumulate observational data which oftentimes cannot be used to measure causal effects of marketing campaigns due to endogeneity issues. In this paper we show how estimation uncertainty of causal effects can be reduced by combining the two data sources by employing a self-regulatory weighting scheme that adapts to the underlying bias and variance. We also introduce an instrument-free exogeneity test designed to assess whether the observational data is significantly endogenous and experimentation is necessary. To demonstrate the effectiveness of our approach, we implement the combined estimator for a real-life data set in which returning customers were awarded with a discount. We demonstrate how the indecisive result of the experimental data alone can be improved by our weighted estimator, and arrive to the conclusion that the loyalty discount has a notably negative effect on net sales.

Suggested Citation

  • Francisco Blasques & Paolo Gorgi & Siem Jan Koopman & Noah Stegehuis, 2024. "Mitigating Estimation Risk: a Data-Driven Fusion of Experimental and Observational Data," Tinbergen Institute Discussion Papers 24-066/III, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20240066
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/24066.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    endogeneity; data fusion; experimental data; observational data;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C93 - Mathematical and Quantitative Methods - - Design of Experiments - - - Field Experiments

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20240066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.