IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20240037.html
   My bibliography  Save this paper

Statistical Early Warning Models with Applications

Author

Listed:
  • Lucas P. Harlaar

    (Vrije Universiteit Amsterdam)

  • Jacques J.F. Commandeur

    (Vrije Universiteit Amsterdam)

  • Jan A. van den Brakel

    (Maastricht University)

  • Siem Jan Koopman

    (Vrije Universiteit Amsterdam)

  • Niels Bos

    (SWOV Institute for Road Safety Research)

  • Frits D. Bijleveld

    (Vrije Universiteit Amsterdam)

Abstract

This paper investigates the feasibility of using earlier provisional data to improve the now- and forecasting accuracy of final and official statistics. We propose the use of a multivariate structural time series model which includes common trends and seasonal components to combine official statistics series with related auxiliary series. In this way, more precise and more timely nowcasts and forecasts of the official statistics can be obtained by exploiting the higher frequency and/or the more timely availability of the auxiliary series. The proposed method can be applied to different data sources consisting of any number of missing observations both at the beginning and at the end of the series simultaneously. Two empirical applications are presented. The first one focuses on fatal traffic accidents and the second one on labour force participation at the municipal level. The results demonstrate the effectiveness of our proposed approach in improving forecasting performance for the target series and providing early warnings to policy-makers.

Suggested Citation

  • Lucas P. Harlaar & Jacques J.F. Commandeur & Jan A. van den Brakel & Siem Jan Koopman & Niels Bos & Frits D. Bijleveld, 2024. "Statistical Early Warning Models with Applications," Tinbergen Institute Discussion Papers 24-037/III, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20240037
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/24037.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
    2. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    3. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
    4. Commandeur, Jacques J.F. & Koopman, Siem Jan, 2007. "An Introduction to State Space Time Series Analysis," OUP Catalogue, Oxford University Press, number 9780199228874.
    5. Danny Pfeffermann & Richard Tiller, 2005. "Bootstrap Approximation to Prediction MSE for State–Space Models with Estimated Parameters," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(6), pages 893-916, November.
    6. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    7. repec:hal:journl:peer-00844811 is not listed on IDEAS
    8. Blasques, F. & Koopman, S.J. & Mallee, M. & Zhang, Z., 2016. "Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 405-417.
    9. van den Brakel Jan & Michiels John, 2021. "Nowcasting Register Labour Force Participation Rates in Municipal Districts Using Survey Data," Journal of Official Statistics, Sciendo, vol. 37(4), pages 1009-1045, December.
    10. Andrius Grybauskas & Vaida Pilinkienė & Mantas Lukauskas & Alina Stundžienė & Jurgita Bruneckienė, 2023. "Nowcasting Unemployment Using Neural Networks and Multi-Dimensional Google Trends Data," Economies, MDPI, vol. 11(5), pages 1-23, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael W. McCracken & Michael T. Owyang & Tatevik Sekhposyan, 2021. "Real-Time Forecasting and Scenario Analysis Using a Large Mixed-Frequency Bayesian VAR," International Journal of Central Banking, International Journal of Central Banking, vol. 17(71), pages 1-41, December.
    2. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    3. Hindrayanto, Irma & Koopman, Siem Jan & de Winter, Jasper, 2016. "Forecasting and nowcasting economic growth in the euro area using factor models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1284-1305.
    4. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
    5. Rusnák, Marek, 2016. "Nowcasting Czech GDP in real time," Economic Modelling, Elsevier, vol. 54(C), pages 26-39.
    6. Irma Hindrayanto & Siem Jan Koopman & Jasper de Winter, 2014. "Nowcasting and Forecasting Economic Growth in the Euro Area using Principal Components," Tinbergen Institute Discussion Papers 14-113/III, Tinbergen Institute.
    7. Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2018. "Using low frequency information for predicting high frequency variables," International Journal of Forecasting, Elsevier, vol. 34(4), pages 774-787.
    8. Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022. "Nowcasting with large Bayesian vector autoregressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
    9. Soybilgen, Barış & Yazgan, Ege, 2018. "Evaluating nowcasts of bridge equations with advanced combination schemes for the Turkish unemployment rate," Economic Modelling, Elsevier, vol. 72(C), pages 99-108.
    10. Ankargren Sebastian & Unosson Måns & Yang Yukai, 2020. "A Flexible Mixed-Frequency Vector Autoregression with a Steady-State Prior," Journal of Time Series Econometrics, De Gruyter, vol. 12(2), pages 1-41, July.
    11. Jansen, W. Jos & Jin, Xiaowen & de Winter, Jasper M., 2016. "Forecasting and nowcasting real GDP: Comparing statistical models and subjective forecasts," International Journal of Forecasting, Elsevier, vol. 32(2), pages 411-436.
    12. Jos Jansen & Jasper de Winter, 2016. "Improving model-based near-term GDP forecasts by subjective forecasts: A real-time exercise for the G7 countries," DNB Working Papers 507, Netherlands Central Bank, Research Department.
    13. Markus Heinrich & Magnus Reif, 2020. "Real-Time Forecasting Using Mixed-Frequency VARS with Time-Varying Parameters," CESifo Working Paper Series 8054, CESifo.
    14. Li, Mengheng & Koopman, Siem Jan & Lit, Rutger & Petrova, Desislava, 2020. "Long-term forecasting of El Niño events via dynamic factor simulations," Journal of Econometrics, Elsevier, vol. 214(1), pages 46-66.
    15. Markus Heinrich & Magnus Reif, 2018. "Forecasting using mixed-frequency VARs with time-varying parameters," ifo Working Paper Series 273, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    16. Alejandro Rodriguez & Esther Ruiz, 2009. "Bootstrap prediction intervals in state–space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 167-178, March.
    17. Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.
    18. Alexander Tsyplakov, 2011. "An introduction to state space modeling (in Russian)," Quantile, Quantile, issue 9, pages 1-24, July.
    19. Chang, Yu Sang, 2014. "Comparative analysis of long-term road fatality targets for individual states in the US—An application of experience curve models," Transport Policy, Elsevier, vol. 36(C), pages 53-69.
    20. Katja Heinisch & Rolf Scheufele, 2018. "Bottom-up or direct? Forecasting German GDP in a data-rich environment," Empirical Economics, Springer, vol. 54(2), pages 705-745, March.

    More about this item

    Keywords

    nowcasting; multivariate structural time series model; seemingly unrelated time series equations; Kalman filter; road fatalities; labour market statistics;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20240037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.