Slow Expectation-Maximization Convergence in Low-Noise Dynamic Factor Models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011.
"A two-step estimator for large approximate dynamic factor models based on Kalman filtering,"
Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2006. "A Two-step estimator for large approximate dynamic factor models based on Kalman filtering," THEMA Working Papers 2006-23, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," PSE-Ecole d'économie de Paris (Postprint) hal-00638009, HAL.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00638009, HAL.
- Catherine Doz & Lucrezia Reichlin, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Post-Print hal-00844811, HAL.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Post-Print hal-00638009, HAL.
- Reichlin, Lucrezia & Doz, Catherine & Giannone, Domenico, 2007. "A Two-Step Estimator for Large Approximate Dynamic Factor Models Based on Kalman Filtering," CEPR Discussion Papers 6043, C.E.P.R. Discussion Papers.
- repec:hal:journl:peer-00844811 is not listed on IDEAS
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012.
"A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models,"
The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
- Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "A quasi maximum likelihood approach for large approximate dynamic factor models," Working Paper Series 674, European Central Bank.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," Post-Print hal-00638440, HAL.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00638440, HAL.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," PSE-Ecole d'économie de Paris (Postprint) hal-00638440, HAL.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2008. "A Quasi Maximum Likelihood Approach for Large Approximate Dynamic Factor Models," Working Papers ECARES 2008_034, ULB -- Universite Libre de Bruxelles.
- Reichlin, Lucrezia & Doz, Catherine & Giannone, Domenico, 2006. "A Quasi Maximum Likelihood Approach for Large Approximate Dynamic Factor Models," CEPR Discussion Papers 5724, C.E.P.R. Discussion Papers.
- Tobias Adrian & Federico Grinberg & Nellie Liang & Sheheryar Malik & Jie Yu, 2022.
"The Term Structure of Growth-at-Risk,"
American Economic Journal: Macroeconomics, American Economic Association, vol. 14(3), pages 283-323, July.
- Adrian, Tobias & Liang, Nellie & Grinberg, Federico & Malik, Sheherya, 2018. "The Term Structure of Growth-at-Risk," CEPR Discussion Papers 13349, C.E.P.R. Discussion Papers.
- Mr. Tobias Adrian & Federico Grinberg & Nellie Liang & Sheheryar Malik, 2018. "The Term Structure of Growth-at-Risk," IMF Working Papers 2018/180, International Monetary Fund.
- Proietti, Tommaso, 2008. "Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components," MPRA Paper 6860, University Library of Munich, Germany.
- Matteo Barigozzi & Marc Hallin, 2023.
"Dynamic Factor Models: a Genealogy,"
Papers
2310.17278, arXiv.org, revised Jan 2024.
- Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Working Papers ECARES 2023-15, ULB -- Universite Libre de Bruxelles.
- Thomas Despois & Catherine Doz, 2023. "Identifying and interpreting the factors in factor models via sparsity: Different approaches," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 533-555, June.
- Aßmann, Christian & Boysen-Hogrefe, Jens & Pape, Markus, 2012.
"The directional identification problem in Bayesian factor analysis: An ex-post approach,"
Kiel Working Papers
1799, Kiel Institute for the World Economy (IfW Kiel).
- Pape, Markus & Aßmann, Christian & Boysen-Hogrefe, Jens, 2013. "The Directional Identification Problem in Bayesian Factor Analysis: An Ex-Post Approach," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79990, Verein für Socialpolitik / German Economic Association.
- Aßmann, Christian & Boysen-Hogrefe, Jens & Pape, Markus, 2012. "The directional identification problem in Bayesian factor analysis: An ex-post approach," Economics Working Papers 2012-11, Christian-Albrechts-University of Kiel, Department of Economics.
- Laurent Ferrara & Anna Simoni, 2023.
"When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.
- Laurent Ferrara & Anna Simoni, 2019. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working Papers 2019-04, Center for Research in Economics and Statistics.
- Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Post-Print hal-03919944, HAL.
- Laurent Ferrara & Anna Simoni, 2020. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," EconomiX Working Papers 2020-11, University of Paris Nanterre, EconomiX.
- Laurent Ferrara & Anna Simoni, 2019. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working papers 717, Banque de France.
- Laurent Ferrara & Anna Simoni, 2020. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Papers 2007.00273, arXiv.org, revised Sep 2022.
- Laurent Ferrara & Anna Simoni, 2020. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working Papers hal-04159714, HAL.
- Katerina Arnostova & David Havrlant & Luboš Rùžièka & Peter Tóth, 2011.
"Short-Term Forecasting of Czech Quarterly GDP Using Monthly Indicators,"
Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 61(6), pages 566-583, December.
- Katerina Arnostova & David Havrlant & Lubos Ruzicka & Peter Toth, 2010. "Short-Term Forecasting of Czech Quarterly GDP Using Monthly Indicators," Working Papers 2010/12, Czech National Bank.
- Szafranek, Karol, 2019.
"Bagged neural networks for forecasting Polish (low) inflation,"
International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
- Karol Szafranek, 2017. "Bagged artificial neural networks in forecasting inflation: An extensive comparison with current modelling frameworks," NBP Working Papers 262, Narodowy Bank Polski.
- Beetsma, Roel & Cimadomo, Jacopo & van Spronsen, Josha, 2024.
"One scheme fits all: A central fiscal capacity for the EMU targeting eurozone, national and regional shocks,"
European Economic Review, Elsevier, vol. 165(C).
- Beetsma, Roel & Cimadomo, Jacopo & van Spronsen, Josha, 2022. "One scheme fits all: a central fiscal capacity for the EMU targeting eurozone, national and regional shocks," Working Paper Series 2666, European Central Bank.
- Beetsma, Roel & Cimadomo, Jacopo & van Spronsen, Josha, 2022. "One Scheme Fits All: A Central Fiscal Capacity for the EMU Targeting Eurozone, National and Regional Shocks," CEPR Discussion Papers 16829, C.E.P.R. Discussion Papers.
- Xiong, Ruoxuan & Pelger, Markus, 2023.
"Large dimensional latent factor modeling with missing observations and applications to causal inference,"
Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
- Ruoxuan Xiong & Markus Pelger, 2019. "Large Dimensional Latent Factor Modeling with Missing Observations and Applications to Causal Inference," Papers 1910.08273, arXiv.org, revised Jan 2022.
- Françoise Charpin, 2011. "Réévaluation des modèles d’estimation précoce de la croissance," Post-Print hal-03461522, HAL.
- Baumeister, Christiane & Liu, Philip & Mumtaz, Haroon, 2013.
"Changes in the effects of monetary policy on disaggregate price dynamics,"
Journal of Economic Dynamics and Control, Elsevier, vol. 37(3), pages 543-560.
- Christiane Baumeister & Philip Liu & Haroon Mumtaz, 2012. "Changes in the Effects of Monetary Policy on Disaggregate Price Dynamics," Staff Working Papers 12-13, Bank of Canada.
- Katja Heinisch & Rolf Scheufele, 2018.
"Bottom-up or direct? Forecasting German GDP in a data-rich environment,"
Empirical Economics, Springer, vol. 54(2), pages 705-745, March.
- Katja Drechsel & Rolf Scheufele, 2012. "Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment," Working Papers 2012-16, Swiss National Bank.
- Drechsel, Katja & Scheufele, Rolf, 2013. "Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment," IWH Discussion Papers 7/2013, Halle Institute for Economic Research (IWH).
- Hindrayanto, Irma & Koopman, Siem Jan & de Winter, Jasper, 2016. "Forecasting and nowcasting economic growth in the euro area using factor models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1284-1305.
- Mitsuru Katagiri, 2018. "House Price Synchronization and Financial Openness: A Dynamic Factor Model Approach," IMF Working Papers 2018/209, International Monetary Fund.
- James Sampi, 2016. "High Dimensional Factor Models: An Empirical Bayes Approach," Working Papers 75, Peruvian Economic Association.
- Stavros Degiannakis, 2023.
"The D-model for GDP nowcasting,"
Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-33, December.
- Stavros Degiannakis, 2023. "The D-model for GDP nowcasting," Working Papers 317, Bank of Greece.
- Lucchetti, Riccardo & Venetis, Ioannis A., 2020.
"A replication of "A quasi-maximum likelihood approach for large, approximate dynamic factor models" (Review of Economics and Statistics, 2012),"
Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 14, pages 1-14.
- Lucchetti, Riccardo & Venetis, Ioannis A., 2020. "A replication of "A quasi-maximum likelihood approach for large, approximate dynamic factor models" (Review of Economics and Statistics, 2012)," Economics Discussion Papers 2020-5, Kiel Institute for the World Economy (IfW Kiel).
- Samvel S. Lazaryan & Nikita E. German, 2018. "Forecasting Current GDP Dynamics With Google Search Data," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 6, pages 83-94, December.
More about this item
Keywords
Dynamic factor models; EM algorithm; artificial noise; convergence speed; nowcasting;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2023-05-08 (Econometrics)
- NEP-ETS-2023-05-08 (Econometric Time Series)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20230018. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.