IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20040072.html
   My bibliography  Save this paper

On the u-th Geometric Conditional Quantile

Author

Listed:
  • Yebin Cheng

    (Faculty of Economics and Econometrics, Universiteit van Amsterdam)

  • Jan G. de Gooijer

    (Faculty of Economics and Econometrics, Universiteit van Amsterdam)

Abstract

Motivated by Chaudhuri's work (1996) on unconditional geometric quantiles, we explore the asymptotic properties of sample geometric conditional quantiles, defined through kernel functions, in high dimensional spaces. We establish a Bahadur type linear representation for the geometric conditional quantile estimator and obtain the convergence rate for the corresponding remainder term. From this, asymptotic normality on the estimated geometric conditional quantile is derived. Based on these results we propose confidence ellipsoids for multivariate conditional quantiles. The methodology is illustrated via data analysis and a Monte Carlo study.

Suggested Citation

  • Yebin Cheng & Jan G. de Gooijer, 2004. "On the u-th Geometric Conditional Quantile," Tinbergen Institute Discussion Papers 04-072/4, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20040072
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/04072.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert Serfling, 2002. "Quantile functions for multivariate analysis: approaches and applications," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 56(2), pages 214-232, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2018. "A novel multivariate risk measure: the Kendall VaR," Post-Print halshs-01467857, HAL.
    2. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2017. "A novel multivariate risk measure: the Kendall VaR," Documents de travail du Centre d'Economie de la Sorbonne 17008, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    3. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2017. "A novel multivariate risk measure: the Kendall VaR," Documents de travail du Centre d'Economie de la Sorbonne 17008r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Apr 2018.
    4. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2018. "A novel multivariate risk measure: the Kendall VaR," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01467857, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarno, Lucio & Schneider, Paul & Wagner, Christian, 2012. "Properties of foreign exchange risk premiums," Journal of Financial Economics, Elsevier, vol. 105(2), pages 279-310.
    2. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    3. Barme-Delcroix, Marie-Francoise & Gather, Ursula, 2007. "Limit laws for multidimensional extremes," Statistics & Probability Letters, Elsevier, vol. 77(18), pages 1750-1755, December.
    4. Dette, Holger & Hoderlein, Stefan & Neumeyer, Natalie, 2016. "Testing multivariate economic restrictions using quantiles: The example of Slutsky negative semidefiniteness," Journal of Econometrics, Elsevier, vol. 191(1), pages 129-144.
    5. Paul Embrechts & Marius Hofert, 2013. "A note on generalized inverses," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 423-432, June.
    6. Salhi, Khaled & Deaconu, Madalina & Lejay, Antoine & Champagnat, Nicolas & Navet, Nicolas, 2016. "Regime switching model for financial data: Empirical risk analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 148-157.
    7. repec:spo:wpmain:info:hdl:2441/3qnaslliat80pbqa8t90240unj is not listed on IDEAS
    8. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    9. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    10. Judith Eidenberger & Vanessa Redak & Eva Ubl, 2019. "Who puts our financial system at risk? A methodological approach to identify banks with potential significant negative effects on financial stability," Financial Stability Report, Oesterreichische Nationalbank (Austrian Central Bank), issue 37, pages 57-72.
    11. Mohamed CHAOUCH & Ali GANNOUN & Jérôme SARACCO, 2008. "Conditional Spatial Quantile: Characterization and Nonparametric Estimation," Cahiers du GREThA (2007-2019) 2008-10, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    12. Sordo, Miguel A., 2016. "A multivariate extension of the increasing convex order to compare risks," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 224-230.
    13. Emilio Carrizosa & Frank Plastria, 2008. "Optimal Expected-Distance Separating Halfspace," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 662-677, August.
    14. Packham, Natalie & Woebbeking, Fabian, 2021. "Correlation scenarios and correlation stress testing," IRTG 1792 Discussion Papers 2021-012, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    15. Nadja Klein & Thomas Kneib, 2020. "Directional bivariate quantiles: a robust approach based on the cumulative distribution function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(2), pages 225-260, June.
    16. Frank Critchley & M. C. Jones, 2008. "Asymmetry and Gradient Asymmetry Functions: Density‐Based Skewness and Kurtosis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 415-437, September.
    17. Paola Stolfi & Mauro Bernardi & Lea Petrella, 2018. "The sparse method of simulated quantiles: An application to portfolio optimization," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 375-398, August.
    18. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    19. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    20. Christophe Ley & Camille Sabbah & Thomas Verdebout, 2014. "A new concept of quantiles for directional data and the angular Mahalanobis depth," Working Papers ECARES ECARES 2013-23, ULB -- Universite Libre de Bruxelles.

    More about this item

    Keywords

    Asymptotic normality; Bahadur representation; geometric conditional quantile; confidence ellipsoids; kernel function;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20040072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.