IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20000033.html
   My bibliography  Save this paper

A Comparison of Minimum MSE and Maximum Power for the nearly Integrated Non-Gaussian Model

Author

Listed:
  • Karim M. Abadir

    (University of York)

  • Andre Lucas

    (Vrije Universiteit Amsterdam)

Abstract

This discussion paper resulted in a publication in the Journal of Econometrics (2004). Volume 119, p. 45. We study the optimal choice of quasi-likelihoods for nearly integrated,possibly non-normal, autoregressive models. It turns out that the two mostnatural candidate criteria, minimum Mean Squared Error (MSE) and maximumpower against the unit root null, give rise to different optimalquasi-likelihoods. In both cases, the functional specification of theoptimal quasi-likelihood is the same: it is a combination of the truelikelihood and the Gaussian quasi-likelihood. The optimal relativeweights, however, depend on the criterion chosen and are markedlydifferent. Throughout, we base our results on exact limiting distributiontheory. We derive a new explicit expression for the joint density of theminimal sufficient functionals of Ornstein-Uhlenbeck processes, which alsohas applications in other fields, and we characterize its behaviour forextreme values of its arguments. Using these results, we derive theasymptotic power functions of statistics which converge weakly tocombinations of these sufficient functionals. Finally, we evaluatenumerically our computationally-efficient formulae.

Suggested Citation

  • Karim M. Abadir & Andre Lucas, 2000. "A Comparison of Minimum MSE and Maximum Power for the nearly Integrated Non-Gaussian Model," Tinbergen Institute Discussion Papers 00-033/4, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20000033
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/00033.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Larsson, Rolf, 1995. "The Asymptotic Distributions Of Some Test Statistics in Near-Integrated AR Processes," Econometric Theory, Cambridge University Press, vol. 11(2), pages 306-330, February.
    2. Karim Abadir, 1999. "An introduction to hypergeometric functions for economists," Econometric Reviews, Taylor & Francis Journals, vol. 18(3), pages 287-330.
    3. Perron, Pierre, 1991. "A Continuous Time Approximation to the Unstable First-Order Autoregressive Process: The Case without an Intercept," Econometrica, Econometric Society, vol. 59(1), pages 211-236, January.
    4. Abadir, Karim M, 1992. "A Distribution Generating Equation for Unit-Root Statistics," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 54(3), pages 305-323, August.
    5. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    6. Perron, Pierre, 1989. "The Calculation of the Limiting Distribution of the Least-Squares Estimator in a Near-Integrated Model," Econometric Theory, Cambridge University Press, vol. 5(2), pages 241-255, August.
    7. Rothenberg, Thomas J. & Stock, James H., 1997. "Inference in a nearly integrated autoregressive model with nonnormal innovations," Journal of Econometrics, Elsevier, vol. 80(2), pages 269-286, October.
    8. Lucas, André, 1995. "Unit Root Tests Based on M Estimators," Econometric Theory, Cambridge University Press, vol. 11(2), pages 331-346, February.
    9. Abadir, Karim M. & Lucas, Andre, 2000. "Quantiles for t-statistics based on M-estimators of unit roots," Economics Letters, Elsevier, vol. 67(2), pages 131-137, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Roderick McCrorie, 2021. "Moments in Pearson's Four-Step Uniform Random Walk Problem and Other Applications of Very Well-Poised Generalized Hypergeometric Series," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 244-281, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kai Carstensen, 2003. "The finite-sample performance of robust unit root tests," Statistical Papers, Springer, vol. 44(4), pages 469-482, October.
    2. Christis Katsouris, 2022. "Asymptotic Theory for Unit Root Moderate Deviations in Quantile Autoregressions and Predictive Regressions," Papers 2204.02073, arXiv.org, revised Aug 2023.
    3. Rothenberg, Thomas J. & Stock, James H., 1997. "Inference in a nearly integrated autoregressive model with nonnormal innovations," Journal of Econometrics, Elsevier, vol. 80(2), pages 269-286, October.
    4. Abadir, Karim M. & Lucas, Andre, 2000. "Quantiles for t-statistics based on M-estimators of unit roots," Economics Letters, Elsevier, vol. 67(2), pages 131-137, May.
    5. Mukhtar Ali, 2002. "Distribution Of The Least Squares Estimator In A First-Order Autoregressive Model," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 89-119.
    6. Mukhtar M. Ali, 1996. "Distribution of the Least Squares Estimator in a First-Order Autoregressive Model," Econometrics 9610004, University Library of Munich, Germany.
    7. Pentti Saikkonen & Rickard Sandberg, 2016. "Testing for a Unit Root in Noncausal Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 99-125, January.
    8. Olivier Darné & Amélie Charles, 2012. "A note on the uncertain trend in US real GNP: Evidence from robust unit root tests," Economics Bulletin, AccessEcon, vol. 32(3), pages 2399-2406.
    9. Perron, Pierre, 1996. "The adequacy of asymptotic approximations in the near-integrated autoregressive model with dependent errors," Journal of Econometrics, Elsevier, vol. 70(2), pages 317-350, February.
    10. Gregoir, Stephane, 2006. "Efficient tests for the presence of a pair of complex conjugate unit roots in real time series," Journal of Econometrics, Elsevier, vol. 130(1), pages 45-100, January.
    11. Michael Jansson, 2008. "Semiparametric Power Envelopes for Tests of the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 76(5), pages 1103-1142, September.
    12. Hallin, Marc & van den Akker, Ramon & Werker, Bas J.M., 2011. "A class of simple distribution-free rank-based unit root tests," Journal of Econometrics, Elsevier, vol. 163(2), pages 200-214, August.
    13. Elliott, Graham & Jansson, Michael & Pesavento, Elena, 2004. "Optimal Power for Testing Potential Cointegrating Vectors with Known," University of California at San Diego, Economics Working Paper Series qt2bv7n071, Department of Economics, UC San Diego.
    14. Aparicio, Felipe M. & García, Ana, 2003. "Range unit root tests," DES - Working Papers. Statistics and Econometrics. WS ws031126, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. So, Beong Soo & Shin, Dong Wan, 2001. "An invariant sign test for random walks based on recursive median adjustment," Journal of Econometrics, Elsevier, vol. 102(2), pages 197-229, June.
    16. Pierre Perron & Eduardo Zorita & Iliyan Georgiev & Paulo M. M. Rodrigues & A. M. Robert Taylor, 2017. "Unit Root Tests and Heavy-Tailed Innovations," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(5), pages 733-768, September.
    17. Hernández, Juan R., 2016. "Unit Root Testing in ARMA Models: A Likelihood Ratio Approach," MPRA Paper 100857, University Library of Munich, Germany.
    18. Xuedong Wu & Jeffrey H. Dorfman & Berna Karali, 2018. "The impact of data frequency on market efficiency tests of commodity futures prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(6), pages 696-714, June.
    19. repec:hal:journl:peer-00834424 is not listed on IDEAS
    20. Pierre Perron & Cosme Vodounou, 2001. "Asymptotic approximations in the near-integrated model with a non-zero initial condition," Econometrics Journal, Royal Economic Society, vol. 4(1), pages 1-42.
    21. Blazsek, Szabolcs & Licht, Adrian, 2019. "Co-integration and common trends analysis with score-driven models : an application to the federal funds effective rate and US inflation rate," UC3M Working papers. Economics 28451, Universidad Carlos III de Madrid. Departamento de Economía.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20000033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.