IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/19960166.html
   My bibliography  Save this paper

Maintenance of Light Standards, a Case-Study

Author

Listed:
  • Rommert Dekker
  • J. Robert van der Meer

    (Erasmus University Rotterdam)

  • Raymond Ph. Plasmeijer

    (Erasmus University Rotterdam)

  • Ralph E. Wildeman

    (Erasmus University Rotterdam)

  • Jacco J. de Bruin

    (Europe Combined Terminals, Rotterdam)

Abstract

This paper discusses several strategies for the maintenance of light standards, where each light standard consists of n independent and identical lamps screwed on a chandelier. The lamps are subject to stochastic failures, and must be correctively replaced if the number of failed lamps reaches a prespecified number m; a norm that is set by the local management to guarantee a minimumluminance. As lamps have an increasing failure rate, and there is a fixed cost of hoisting the chandelier, we propose various variants of the m-failure group replacement rule which have in particular an age-criterion to indicate which of the non-failed lamps must be preventively replaced at the time that the chandelier is lowered for a corrective lamp replacement; we show how the optimalthreshold age can be determined. It appears that this modification reduces the long run average maintenance cost of the Europe Combined Terminals with approximately 8.3%.

Suggested Citation

  • Rommert Dekker & J. Robert van der Meer & Raymond Ph. Plasmeijer & Ralph E. Wildeman & Jacco J. de Bruin, 1996. "Maintenance of Light Standards, a Case-Study," Tinbergen Institute Discussion Papers 96-166/9, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:19960166
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/96166.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Assaf & J. George Shanthikumar, 1987. "Optimal Group Maintenance Policies with Continuous and Periodic Inspections," Management Science, INFORMS, vol. 33(11), pages 1440-1452, November.
    2. Rommert Dekker & Ralph Wildeman & Frank Duyn Schouten, 1997. "A review of multi-component maintenance models with economic dependence," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 45(3), pages 411-435, October.
    3. Peter Ritchken & John G. Wilson, 1990. "(m,T) Group Maintenance Policies," Management Science, INFORMS, vol. 36(5), pages 632-639, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernd Heidergott & Taoying Farenhorst-Yuan, 2010. "Gradient Estimation for Multicomponent Maintenance Systems with Age-Replacement Policy," Operations Research, INFORMS, vol. 58(3), pages 706-718, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robin P. Nicolai & Rommert Dekker, 2008. "Optimal Maintenance of Multi-component Systems: A Review," Springer Series in Reliability Engineering, in: Complex System Maintenance Handbook, chapter 11, pages 263-286, Springer.
    2. Nourelfath, Mustapha & Châtelet, Eric, 2012. "Integrating production, inventory and maintenance planning for a parallel system with dependent components," Reliability Engineering and System Safety, Elsevier, vol. 101(C), pages 59-66.
    3. Liu, Gia-Shie, 2011. "Dynamic group instantaneous replacement policies for unreliable Markovian service systems," International Journal of Production Economics, Elsevier, vol. 130(2), pages 203-217, April.
    4. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    5. Bruns, Peter, 2002. "Optimal maintenance strategies for systems with partial repair options and without assuming bounded costs," European Journal of Operational Research, Elsevier, vol. 139(1), pages 146-165, May.
    6. Petchrompo, Sanyapong & Parlikad, Ajith Kumar, 2019. "A review of asset management literature on multi-asset systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 181-201.
    7. Dao, Cuong D. & Zuo, Ming J. & Pandey, Mayank, 2014. "Selective maintenance for multi-state series–parallel systems under economic dependence," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 240-249.
    8. Erguido, A. & Crespo Márquez, A. & Castellano, E. & Gómez Fernández, J.F., 2017. "A dynamic opportunistic maintenance model to maximize energy-based availability while reducing the life cycle cost of wind farms," Renewable Energy, Elsevier, vol. 114(PB), pages 843-856.
    9. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    10. Wooseung Jang & J. George Shanthikumar, 2002. "Stochastic allocation of inspection capacity to competitive processes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(1), pages 78-94, February.
    11. Seyed Habib A. Rahmati & Abbas Ahmadi & Kannan Govindan, 2018. "A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem: simulation-based optimization approach," Annals of Operations Research, Springer, vol. 269(1), pages 583-621, October.
    12. Ayse Sena Eruguz & Tarkan Tan & Geert‐Jan van Houtum, 2017. "Optimizing usage and maintenance decisions for k‐out‐of‐n systems of moving assets," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(5), pages 418-434, August.
    13. Maquirriain, Javier & García-Villoria, Alberto & Pastor, Rafael, 2024. "Matheuristics for scheduling of maintenance service with linear operation cost and step function maintenance cost," European Journal of Operational Research, Elsevier, vol. 315(1), pages 73-87.
    14. J Ansell & T Archibald & J Dagpunar & L Thomas & P Abell & D Duncalf, 2003. "Analysing maintenance data to gain insight into systems performance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(4), pages 343-349, April.
    15. Verbert, K. & De Schutter, B. & Babuška, R., 2017. "Timely condition-based maintenance planning for multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 310-321.
    16. Nguyen, Ho Si Hung & Do, Phuc & Vu, Hai-Canh & Iung, Benoit, 2019. "Dynamic maintenance grouping and routing for geographically dispersed production systems," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 392-404.
    17. Zhicheng Zhu & Yisha Xiang & Bo Zeng, 2021. "Multicomponent Maintenance Optimization: A Stochastic Programming Approach," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 898-914, July.
    18. Lu, Biao & Zhou, Xiaojun, 2017. "Opportunistic preventive maintenance scheduling for serial-parallel multistage manufacturing systems with multiple streams of deterioration," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 116-127.
    19. Kivanç, İpek & Fecarotti, Claudia & Raassens, Néomie & van Houtum, Geert-Jan, 2024. "A scalable multi-objective maintenance optimization model for systems with multiple heterogeneous components and a finite lifespan," European Journal of Operational Research, Elsevier, vol. 315(2), pages 567-579.
    20. Liu, Xinbao & Yang, Tianji & Pei, Jun & Liao, Haitao & Pohl, Edward A., 2019. "Replacement and inventory control for a multi-customer product service system with decreasing replacement costs," European Journal of Operational Research, Elsevier, vol. 273(2), pages 561-574.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:19960166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.