IDEAS home Printed from https://ideas.repec.org/p/thk/wpaper/inetwp164.html
   My bibliography  Save this paper

Expectations Concordance and Stock Market Volatility: Knightian Uncertainty in the Year of the Pandemic

Author

Listed:
  • Roman Frydman

    (New York University)

  • Nicholas Mangee

    (Georgia Southern University)

Abstract

This study introduces a novel index based on expectations concordance for explaining stock-price volatility when historically unique events cause unforeseeable change and Knightian uncertainty in the process driving outcomes. Expectations concordance measures the degree to which non-repetitive events are associated with directionally similar expectations of future returns. Narrative analytics of daily news reports allow for assessment of bullish versus bearish views in the stock market. Increases in expectations concordance across all KU events leads to reinforcing effects and an increase in stock market volatility. Lower expectations concordance produces a stabilizing effect wherein the offsetting views reduce market volatility. The empirical findings hold for ex post and ex ante measures of volatility and for OLS and GARCH estimates.

Suggested Citation

  • Roman Frydman & Nicholas Mangee, 2021. "Expectations Concordance and Stock Market Volatility: Knightian Uncertainty in the Year of the Pandemic," Working Papers Series inetwp164, Institute for New Economic Thinking.
  • Handle: RePEc:thk:wpaper:inetwp164
    DOI: 10.36687/inetwp164
    as

    Download full text from publisher

    File URL: https://doi.org/10.36687/inetwp164
    File Function: First version, 2021
    Download Restriction: no

    File URL: https://libkey.io/10.36687/inetwp164?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Campbell, John Y. & Giglio, Stefano & Polk, Christopher & Turley, Robert, 2018. "An intertemporal CAPM with stochastic volatility," Journal of Financial Economics, Elsevier, vol. 128(2), pages 207-233.
    2. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
    3. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    4. Alexopoulos, Michelle & Cohen, Jon, 2015. "The power of print: Uncertainty shocks, markets, and the economy," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 8-28.
    5. Manela, Asaf & Moreira, Alan, 2017. "News implied volatility and disaster concerns," Journal of Financial Economics, Elsevier, vol. 123(1), pages 137-162.
    6. Mangee,Nicholas, 2021. "How Novelty and Narratives Drive the Stock Market," Cambridge Books, Cambridge University Press, number 9781108838450, January.
    7. Nicholas Mangee & Michael D. Goldberg, 2020. "A Cointegrated VAR Analysis of Stock Price Models: Fundamentals, Psychology and Structural Change," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 21(4), pages 352-368, October.
    8. Harrison Hong & Jeremy C. Stein, 2007. "Disagreement and the Stock Market," Journal of Economic Perspectives, American Economic Association, vol. 21(2), pages 109-128, Spring.
    9. Friberg, Richard & Seiler, Thomas, 2017. "Risk and ambiguity in 10-Ks: An examination of cash holding and derivatives use," Journal of Corporate Finance, Elsevier, vol. 45(C), pages 608-631.
    10. Frydman, Roman & Goldberg, Michael D. & Mangee, Nicholas, 2015. "Knightian uncertainty and stock-price movements: Why the REH present-value model failed empirically," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 9, pages 1-50.
    11. Liu, Li & Zhang, Tao, 2015. "Economic policy uncertainty and stock market volatility," Finance Research Letters, Elsevier, vol. 15(C), pages 99-105.
    12. Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
    13. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    14. Hansen, Simon Lysbjerg, 2015. "Cross-sectional asset pricing with heterogeneous preferences and beliefs," Journal of Economic Dynamics and Control, Elsevier, vol. 58(C), pages 125-151.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mangee, Nicholas, 2024. "Stock price swings and fundamentals: The role of Knightian uncertainty," International Review of Financial Analysis, Elsevier, vol. 91(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mangee, Nicholas, 2024. "Stock price swings and fundamentals: The role of Knightian uncertainty," International Review of Financial Analysis, Elsevier, vol. 91(C).
    2. Eleni Kalamara & Arthur Turrell & Chris Redl & George Kapetanios & Sujit Kapadia, 2022. "Making text count: Economic forecasting using newspaper text," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 896-919, August.
    3. Müller, Karsten, 2020. "German forecasters' narratives: How informative are German business cycle forecast reports?," Working Papers 23, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    4. Kirtac, Kemal & Germano, Guido, 2024. "Sentiment trading with large language models," Finance Research Letters, Elsevier, vol. 62(PB).
    5. Himounet, Nicolas, 2022. "Searching the nature of uncertainty: Macroeconomic and financial risks VS geopolitical and pandemic risks," International Economics, Elsevier, vol. 170(C), pages 1-31.
    6. Fraiberger, Samuel P. & Lee, Do & Puy, Damien & Ranciere, Romain, 2021. "Media sentiment and international asset prices," Journal of International Economics, Elsevier, vol. 133(C).
    7. David Kohns & Arnab Bhattacharjee, 2020. "Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model," Papers 2011.00938, arXiv.org, revised May 2022.
    8. Ali Kabiri & Harold James & John Landon‐Lane & David Tuckett & Rickard Nyman, 2023. "The role of sentiment in the US economy: 1920 to 1934," Economic History Review, Economic History Society, vol. 76(1), pages 3-30, February.
    9. Dou, Winston Wei & Ji, Yan & Wu, Wei, 2021. "Competition, profitability, and discount rates," Journal of Financial Economics, Elsevier, vol. 140(2), pages 582-620.
    10. Lei Shi, 2010. "Portfolio Analysis and Equilibrium Asset Pricing with Heterogeneous Beliefs," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 9, July-Dece.
    11. Hu, Zhijun & Kutan, Ali M. & Sun, Ping-Wen, 2018. "Is U.S. economic policy uncertainty priced in China's A-shares market? Evidence from market, industry, and individual stocks," International Review of Financial Analysis, Elsevier, vol. 57(C), pages 207-220.
    12. Luu Duc Huynh, Toan, 2020. "The effect of uncertainty on the precious metals market: New insights from Transfer Entropy and Neural Network VAR," Resources Policy, Elsevier, vol. 66(C).
    13. Ali Kabiri & Harold James & John Landon-Lane & David Tuckett & Rickard Nyman, 2020. "The Role of Sentiment in the Economy: 1920 to 1934," CESifo Working Paper Series 8336, CESifo.
    14. Faccini, Renato & Matin, Rastin & Skiadopoulos, George, 2023. "Dissecting climate risks: Are they reflected in stock prices?," Journal of Banking & Finance, Elsevier, vol. 155(C).
    15. Jeon, Yoontae & McCurdy, Thomas H. & Zhao, Xiaofei, 2022. "News as sources of jumps in stock returns: Evidence from 21 million news articles for 9000 companies," Journal of Financial Economics, Elsevier, vol. 145(2), pages 1-17.
    16. Aromi, J. Daniel, 2020. "Linking words in economic discourse: Implications for macroeconomic forecasts," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1517-1530.
    17. Ansgar Belke & Dominik Kronen, 2017. "The impact of uncertainty on macro variables - An SVAR-based empirical analysis for EU countries," ROME Working Papers 201708, ROME Network.
    18. Nicholas Apergis & Ioannis Chatziantoniou, 2022. "US partisan conflict shocks and international stock market returns," Empirical Economics, Springer, vol. 63(6), pages 2817-2854, December.
    19. Tengfei Zhang, 2020. "Manager Uncertainty and Cross-Sectional Stock Returns," 2020 Papers pzh934, Job Market Papers.
    20. Jing Yuan & Yajing Dong & Weijie Zhai & Zongwu Cai, 2021. "Economic Policy Uncertainty: Cross-Country Linkages and Spillover Effects on Economic Development in Some Belt and Road Countries," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202110, University of Kansas, Department of Economics, revised Nov 2021.

    More about this item

    Keywords

    expectations concordance; narrative analytics; volatility; Knightian uncertainty;
    All these keywords.

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:thk:wpaper:inetwp164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Pia Malaney (email available below). General contact details of provider: https://edirc.repec.org/data/inetnus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.