IDEAS home Printed from https://ideas.repec.org/p/ssb/dispap/330.html
   My bibliography  Save this paper

Identification, Estimation and Testing in Panel Data Models with Attrition: The Role of the Missing at Random Assumption

Author

Listed:

Abstract

This paper discusses identification, estimation and testing in panel data models with attrition. We focus on a situation which often occurs in the analysis of firms: Attrition (exit) is endogenous and depends on the outcomes of an observed stochastic process and the interest-parameters characterizing this process. Thus attrition is non-ignorable even if selection is based only on observed variables - that is, even if the missing items are missing at random (MAR). The likelihood function obtained by ignoring the attrition mechanism is a pseudo likelihood function. Assuming that the MAR condition holds, this paper establishes conditions for identification and consistent estimation based on the pseudo likelihood function. It is also shown that the MAR hypothesis has testable implications in many situations that are encountered in practice. Simulations suggest that in the case of the autoregressive model with random effects, the efficiency of the pseudo likelihood estimator (based on normality) is not much affected even by strong departures from normality. In a variety of simulation models, the pseudo likelihood estimator clearly outperforms the moment estimators - even when the latter are consistent.

Suggested Citation

  • Arvid Raknerud, 2002. "Identification, Estimation and Testing in Panel Data Models with Attrition: The Role of the Missing at Random Assumption," Discussion Papers 330, Statistics Norway, Research Department.
  • Handle: RePEc:ssb:dispap:330
    as

    Download full text from publisher

    File URL: https://www.ssb.no/a/publikasjoner/pdf/DP/dp-330.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert Moffitt & John Fitzgerald & Peter Gottschalk, 1999. "Sample Attrition in Panel Data: The Role of Selection on Observables," Annals of Economics and Statistics, GENES, issue 55-56, pages 129-152.
    2. Horowitz, Joel L. & Manski, Charles F., 1998. "Censoring of outcomes and regressors due to survey nonresponse: Identification and estimation using weights and imputations," Journal of Econometrics, Elsevier, vol. 84(1), pages 37-58, May.
    3. Ahn, Seung C. & Schmidt, Peter, 1995. "Efficient estimation of models for dynamic panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 5-27, July.
    4. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    5. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
    6. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    7. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    8. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    9. JM Abowd & Bruno Crépon & Francis Kramarz, 1997. "Moment Estimation with Attrition," Working Papers 97-35, Center for Research in Economics and Statistics.
    10. Hausman, Jerry A & Wise, David A, 1979. "Attrition Bias in Experimental and Panel Data: The Gary Income Maintenance Experiment," Econometrica, Econometric Society, vol. 47(2), pages 455-473, March.
    11. Hahn, Jinyong, 1999. "How informative is the initial condition in the dynamic panel model with fixed effects?," Journal of Econometrics, Elsevier, vol. 93(2), pages 309-326, December.
    12. repec:adr:anecst:y:1999:i:55-56:p:05 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alvarez, Javier & Arellano, Manuel, 2022. "Robust likelihood estimation of dynamic panel data models," Journal of Econometrics, Elsevier, vol. 226(1), pages 21-61.
    2. Jeffrey M. Wooldridge, 2002. "Inverse probability weighted M-estimators for sample selection, attrition, and stratification," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 1(2), pages 117-139, August.
    3. Ambra Poggi, 2007. "Does persistence of social exclusion exist in Spain?," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 5(1), pages 53-72, April.
    4. Martin A. Carree, 2002. "Nearly Unbiased Estimation in Dynamic Panel Data Models with Exogenous Variables," Tinbergen Institute Discussion Papers 02-007/2, Tinbergen Institute.
    5. Jeffrey M. Wooldridge, 2005. "Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 39-54, January.
    6. Tong Li & Xiaoyong Zheng, 2008. "Semiparametric Bayesian inference for dynamic Tobit panel data models with unobserved heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(6), pages 699-728.
    7. Richiardi Matteo & Poggi Ambra, 2012. "Imputing Individual Effects in Dynamic Microsimulation Models. An application of the Rank Method," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201213, University of Turin.
    8. Majid M. Al-Sadoon & Tong Li & M. Hashem Pesaran, 2017. "Exponential class of dynamic binary choice panel data models with fixed effects," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 898-927, October.
    9. Ambra Poggi & Matteo Richiardi, 2012. "Accounting for Unobserved Heterogeneity in Discrete-time, Discrete-choice Dynamic Microsimulation Models. An application to Labor Supply and Household Formation in Italy," LABORatorio R. Revelli Working Papers Series 117, LABORatorio R. Revelli, Centre for Employment Studies.
    10. Kazuhiko Hayakawa & M. Hashem Pesaran, 2012. "Robust Standard Errors in Transformed Likelihood Estimation of Dynamic Panel Data Models," Working Paper series 38_12, Rimini Centre for Economic Analysis.
    11. Matteo Richiardi & Ambra Poggi, 2014. "Imputing Individual Effects in Dynamic Microsimulation Models. An application to household formation and labour market participation in Italy," International Journal of Microsimulation, International Microsimulation Association, vol. 7(2), pages 3-39.
    12. Hsiao, Cheng & Hashem Pesaran, M. & Kamil Tahmiscioglu, A., 2002. "Maximum likelihood estimation of fixed effects dynamic panel data models covering short time periods," Journal of Econometrics, Elsevier, vol. 109(1), pages 107-150, July.
    13. Khalaf, Lynda & Saunders, Charles J., 2020. "Monte Carlo two-stage indirect inference (2SIF) for autoregressive panels," Journal of Econometrics, Elsevier, vol. 218(2), pages 419-434.
    14. Binder, Michael & Hsiao, Cheng & Pesaran, M. Hashem, 2005. "Estimation And Inference In Short Panel Vector Autoregressions With Unit Roots And Cointegration," Econometric Theory, Cambridge University Press, vol. 21(4), pages 795-837, August.
    15. Hahn, Jinyong & Hausman, Jerry & Kuersteiner, Guido, 2007. "Long difference instrumental variables estimation for dynamic panel models with fixed effects," Journal of Econometrics, Elsevier, vol. 140(2), pages 574-617, October.
    16. Christopher J. Gerry & Georgios Papadopoulos, 2015. "Sample attrition in the RLMS, 2001–10," The Economics of Transition, The European Bank for Reconstruction and Development, vol. 23(2), pages 425-468, April.
    17. Hayakawa, Kazuhiko & Pesaran, M. Hashem, 2015. "Robust standard errors in transformed likelihood estimation of dynamic panel data models with cross-sectional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 188(1), pages 111-134.
    18. Jinyong Hahn & Jerry Hausman & Guido Kuersteiner, 2005. "Bias Corrected Instrumental Variables Estimation for Dynamic Panel Models with Fixed E¤ects," Boston University - Department of Economics - Working Papers Series WP2005-024, Boston University - Department of Economics.
    19. Sasaki, Yuya, 2015. "Heterogeneity and selection in dynamic panel data," Journal of Econometrics, Elsevier, vol. 188(1), pages 236-249.
    20. Bertoni, Fabio & Colombo, Massimo G. & Grilli, Luca, 2011. "Venture capital financing and the growth of high-tech start-ups: Disentangling treatment from selection effects," Research Policy, Elsevier, vol. 40(7), pages 1028-1043, September.

    More about this item

    Keywords

    Missing at random; non-ignorable attrition; unbalanced panel data; identification; pseudo likelihood; martingale.;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ssb:dispap:330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: L Maasø (email available below). General contact details of provider: https://edirc.repec.org/data/ssbgvno.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.