IDEAS home Printed from https://ideas.repec.org/p/siu/wpaper/08-2013.html
   My bibliography  Save this paper

Limit Theory for an Explosive Autoregressive Process

Author

Listed:
  • Xiaohu Wang

    (Chinese University of Hong Kong)

  • Jun Yu

    (Singapore Management University, School of Economics)

Abstract

Large sample properties are studied for a rst-order autoregression (AR(1)) with a root greater than unity. It is shown that, contrary to the AR coe¢ cient, the least- squares (LS) estimator of the intercept and its t-statistic are asymptotically normal without requiring the Gaussian error distribution, and hence an invariance principle applies. While the invariance principle does not apply to the asymptotic distribution of the LS estimator of the AR coe¢ cient, we show explicitly how it depends on the initial condition and the intercept. Also established are the asymptotic independence between the LS estimators of the intercept and the AR coefficient and the asymptotic independence between their t-statistics. Asymptotic theory for explosive processes is compared to that for unit root AR(1) processes and stationary AR(1) processes. The coefficient based test and the t test have better power for testing the hypothesis of zero intercept in the explosive process than in the stationary process.

Suggested Citation

  • Xiaohu Wang & Jun Yu, 2013. "Limit Theory for an Explosive Autoregressive Process," Working Papers 08-2013, Singapore Management University, School of Economics.
  • Handle: RePEc:siu:wpaper:08-2013
    as

    Download full text from publisher

    File URL: https://mercury.smu.edu.sg/rsrchpubupload/22856/08-2013.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter C. B. Phillips & Shuping Shi & Jun Yu, 2014. "Specification Sensitivity in Right-Tailed Unit Root Testing for Explosive Behaviour," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(3), pages 315-333, June.
    2. Magdalinos, Tassos, 2012. "Mildly explosive autoregression under weak and strong dependence," Journal of Econometrics, Elsevier, vol. 169(2), pages 179-187.
    3. Tom Engsted & Bent Nielsen, 2012. "Testing for rational bubbles in a coexplosive vector autoregression," Econometrics Journal, Royal Economic Society, vol. 15(2), pages 226-254, June.
    4. Peter C. B. Phillips & Yangru Wu & Jun Yu, 2011. "EXPLOSIVE BEHAVIOR IN THE 1990s NASDAQ: WHEN DID EXUBERANCE ESCALATE ASSET VALUES?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(1), pages 201-226, February.
    5. Perron, Pierre, 1991. "A Continuous Time Approximation to the Unstable First-Order Autoregressive Process: The Case without an Intercept," Econometrica, Econometric Society, vol. 59(1), pages 211-236, January.
    6. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    7. Peter C. B. Phillips & Shu-Ping Shi & Jun Yu, 2011. "Specification Sensitivity in Right-Tailed Unit Root Testing for Explosive Behavior," Working Papers 15-2011, Singapore Management University, School of Economics.
    8. Phillips, Peter C.B. & Magdalinos, Tassos, 2007. "Limit theory for moderate deviations from a unit root," Journal of Econometrics, Elsevier, vol. 136(1), pages 115-130, January.
    9. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    10. Nielsen, Bent, 2010. "Analysis Of Coexplosive Processes," Econometric Theory, Cambridge University Press, vol. 26(3), pages 882-915, June.
    11. Phillips, Peter C.B. & Magdalinos, Tassos, 2008. "Limit Theory For Explosively Cointegrated Systems," Econometric Theory, Cambridge University Press, vol. 24(4), pages 865-887, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Horváth, Lajos & Trapani, Lorenzo, 2016. "Statistical inference in a random coefficient panel model," Journal of Econometrics, Elsevier, vol. 193(1), pages 54-75.
    2. Fei, Yijie, 2018. "Limit theory for mildly integrated process with intercept," Economics Letters, Elsevier, vol. 163(C), pages 98-101.
    3. Gao, Min & Yang, Wenzhi & Wu, Shipeng & Yu, Wei, 2022. "Asymptotic normality of residual density estimator in stationary and explosive autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    4. Kruse, Robinson & Kaufmann, Hendrik & Wegener, Christoph, 2018. "Bias-corrected estimation for speculative bubbles in stock prices," Economic Modelling, Elsevier, vol. 73(C), pages 354-364.
    5. Andras Fulop & Jun Yu, 2017. "Bayesian Analysis of Bubbles in Asset Prices," Econometrics, MDPI, vol. 5(4), pages 1-23, October.
    6. Norbert Christopeit & Michael Massmann, 2013. "Estimating Structural Parameters in Regression Models with Adaptive Learning," Tinbergen Institute Discussion Papers 13-111/III, Tinbergen Institute.
    7. Lorenzo Trapani, 2021. "Testing for strict stationarity in a random coefficient autoregressive model," Econometric Reviews, Taylor & Francis Journals, vol. 40(3), pages 220-256, April.
    8. Wang, Xiaohu & Yu, Jun, 2016. "Double asymptotics for explosive continuous time models," Journal of Econometrics, Elsevier, vol. 193(1), pages 35-53.
    9. Christoph P. Kustosz & Anne Leucht & Christine H. MÜller, 2016. "Tests Based on Simplicial Depth for AR(1) Models With Explosion," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(6), pages 763-784, November.
    10. Horváth, Lajos & Trapani, Lorenzo, 2019. "Testing for randomness in a random coefficient autoregression model," Journal of Econometrics, Elsevier, vol. 209(2), pages 338-352.
    11. Katsuto Tanaka & Weilin Xiao & Jun Yu, 2020. "Maximum Likelihood Estimation for the Fractional Vasicek Model," Econometrics, MDPI, vol. 8(3), pages 1-28, August.
    12. Gangzheng Guo & Yixiao Sun & Shaoping Wang, 2019. "Testing for moderate explosiveness," The Econometrics Journal, Royal Economic Society, vol. 22(1), pages 73-95.
    13. Skrobotov Anton, 2023. "Testing for explosive bubbles: a review," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-26, January.
    14. Xiao, Weilin & Yu, Jun, 2019. "Asymptotic theory for rough fractional Vasicek models," Economics Letters, Elsevier, vol. 177(C), pages 26-29.
    15. Jingjie Xiang & Gangzheng Guo & Qing Zhao, 2022. "Testing for a Moderately Explosive Process with Structural Change in Drift," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(2), pages 300-333, April.
    16. Guo, Gangzheng & Wang, Shaoping & Sun, Yixiao, 2018. "Testing for Moderate Explosiveness in the Presence of Drift," University of California at San Diego, Economics Working Paper Series qt2k26h10n, Department of Economics, UC San Diego.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaohu & Yu, Jun, 2016. "Double asymptotics for explosive continuous time models," Journal of Econometrics, Elsevier, vol. 193(1), pages 35-53.
    2. Lui, Yiu Lim & Phillips, Peter C.B. & Yu, Jun, 2024. "Robust testing for explosive behavior with strongly dependent errors," Journal of Econometrics, Elsevier, vol. 238(2).
    3. Ye Chen & Jian Li & Qiyuan Li, 2023. "Seemingly Unrelated Regression Estimation for VAR Models with Explosive Roots," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(4), pages 910-937, August.
    4. Peter C. B. Phillips & Shuping Shi & Jun Yu, 2015. "Testing For Multiple Bubbles: Limit Theory Of Real‐Time Detectors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(4), pages 1079-1134, November.
    5. Peter C. B. Phillips & Shuping Shi & Jun Yu, 2015. "Testing For Multiple Bubbles: Historical Episodes Of Exuberance And Collapse In The S&P 500," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(4), pages 1043-1078, November.
    6. Lin, Yingqian & Tu, Yundong, 2020. "Robust inference for spurious regressions and cointegrations involving processes moderately deviated from a unit root," Journal of Econometrics, Elsevier, vol. 219(1), pages 52-65.
    7. Gangzheng Guo & Yixiao Sun & Shaoping Wang, 2019. "Testing for moderate explosiveness," The Econometrics Journal, Royal Economic Society, vol. 22(1), pages 73-95.
    8. Peter C.B. Phillips & Shu-Ping Shi, 2014. "Financial Bubble Implosion," Cowles Foundation Discussion Papers 1967, Cowles Foundation for Research in Economics, Yale University.
    9. Guo, Gangzheng & Wang, Shaoping & Sun, Yixiao, 2018. "Testing for Moderate Explosiveness in the Presence of Drift," University of California at San Diego, Economics Working Paper Series qt2k26h10n, Department of Economics, UC San Diego.
    10. Funke, Michael & Tsang, Andrew & Zhu, Linxu, 2018. "Not all cities are alike: House price heterogeneity and the design of macro-prudential policies in China," BOFIT Discussion Papers 18/2018, Bank of Finland Institute for Emerging Economies (BOFIT).
    11. Peter C. B. Phillips & Sainan Jin, 2014. "Testing the Martingale Hypothesis," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 537-554, October.
    12. Funke, Michael & Tsang, Andrew & Zhu, Linxu, 2018. "Not all cities are alike: House price heterogeneity and the design of macro-prudential policies in China," BOFIT Discussion Papers 18/2018, Bank of Finland Institute for Emerging Economies (BOFIT).
    13. Kruse, Robinson & Kaufmann, Hendrik & Wegener, Christoph, 2018. "Bias-corrected estimation for speculative bubbles in stock prices," Economic Modelling, Elsevier, vol. 73(C), pages 354-364.
    14. repec:zbw:bofitp:2018_018 is not listed on IDEAS
    15. Peter C.B. Phillips & Shu-Ping Shi & Jun Yu, 2011. "Testing for Multiple Bubbles," Working Papers 09-2011, Singapore Management University, School of Economics.
    16. Janusz Sobieraj & Dominik Metelski, 2021. "Testing Housing Markets for Episodes of Exuberance: Evidence from Different Polish Cities," JRFM, MDPI, vol. 14(9), pages 1-29, September.
    17. Phillips, Peter C.B. & Lee, Ji Hyung, 2016. "Robust econometric inference with mixed integrated and mildly explosive regressors," Journal of Econometrics, Elsevier, vol. 192(2), pages 433-450.
    18. Peter C. B. Phillips & Shu-Ping Shi & Jun Yu, 2011. "Specification Sensitivity in Right-Tailed Unit Root Testing for Explosive Behavior," Working Papers 15-2011, Singapore Management University, School of Economics.
    19. Laurent, Sébastien & Shi, Shuping, 2020. "Volatility estimation and jump detection for drift–diffusion processes," Journal of Econometrics, Elsevier, vol. 217(2), pages 259-290.
    20. Corbet, Shaen & Lucey, Brian & Yarovaya, Larisa, 2018. "Datestamping the Bitcoin and Ethereum bubbles," Finance Research Letters, Elsevier, vol. 26(C), pages 81-88.
    21. Christis Katsouris, 2022. "Asymptotic Theory for Unit Root Moderate Deviations in Quantile Autoregressions and Predictive Regressions," Papers 2204.02073, arXiv.org, revised Aug 2023.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:siu:wpaper:08-2013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: QL THor (email available below). General contact details of provider: https://edirc.repec.org/data/sesmusg.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.