IDEAS home Printed from https://ideas.repec.org/p/sip/dpaper/12-017.html
   My bibliography  Save this paper

The Data Revolution and Economic Analysis

Author

Listed:
  • Liran Einav

    (Stanford University)

  • Johnathan Levin

    (NBER)

Abstract

Many believe that “big data” will transform business, government and other aspects of the economy. In this article we discuss how new data may impact economic policy and economic research. Large-scale administrative datasets and proprietary private sector data can greatly improve the way we measure, track and describe economic activity. They also can enable novel research designs that allow researchers to trace the consequences of different events or policies. We outline some of the challenges in accessing and making use of these data. We also consider whether the big data predictive modeling tools that have emerged in statistics and computer science may prove useful in economics.

Suggested Citation

  • Liran Einav & Johnathan Levin, 2013. "The Data Revolution and Economic Analysis," Discussion Papers 12-017, Stanford Institute for Economic Policy Research.
  • Handle: RePEc:sip:dpaper:12-017
    as

    Download full text from publisher

    File URL: http://www-siepr.stanford.edu/repec/sip/12-017.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter J. Klenow & Oleksiy Kryvtsov, 2008. "State-Dependent or Time-Dependent Pricing: Does it Matter for Recent U.S. Inflation?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 123(3), pages 863-904.
    2. Avi Goldfarb & Catherine Tucker, 2012. "Privacy and Innovation," NBER Chapters, in: Innovation Policy and the Economy, Volume 12, pages 65-89, National Bureau of Economic Research, Inc.
    3. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2011. "Inference on Treatment Effects After Selection Amongst High-Dimensional Controls," Papers 1201.0224, arXiv.org, revised May 2012.
    4. Thomas Piketty & Emmanuel Saez, 2003. "Income Inequality in the United States, 1913–1998," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(1), pages 1-41.
    5. Alberto Cavallo, 2018. "Scraped Data and Sticky Prices," The Review of Economics and Statistics, MIT Press, vol. 100(1), pages 105-119, March.
    6. Liran Einav & Theresa Kuchler & Jonathan Levin & Neel Sundaresan, 2011. "Learning from Seller Experiements in Online Markets," Discussion Papers 10-033, Stanford Institute for Economic Policy Research.
    7. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    8. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    9. Raj Chetty & John N. Friedman & Jonah E. Rockoff, 2011. "The Long-Term Impacts of Teachers: Teacher Value-Added and Student Outcomes in Adulthood," NBER Working Papers 17699, National Bureau of Economic Research, Inc.
    10. Thomas Barrios & Rebecca Diamond & Guido W. Imbens & Michal Kolesár, 2012. "Clustering, Spatial Correlations, and Randomization Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 578-591, June.
    11. Steven L. Scott & Hal R. Varian, 2015. "Bayesian Variable Selection for Nowcasting Economic Time Series," NBER Chapters, in: Economic Analysis of the Digital Economy, pages 119-135, National Bureau of Economic Research, Inc.
    12. Liran Einav & Chiara Farronato & Jonathan D. Levin & Neel Sundaresan, 2013. "Sales Mechanisms in Online Markets: What Happened to Internet Auctions?," NBER Working Papers 19021, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuriy Gorodnichenko & Viacheslav Sheremirov & Oleksandr Talavera, 2018. "Price Setting in Online Markets: Does IT Click?," Journal of the European Economic Association, European Economic Association, vol. 16(6), pages 1764-1811.
    2. Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
    3. Alexandre Belloni & Victor Chernozhukov & Christian Hansen & Damian Kozbur, 2016. "Inference in High-Dimensional Panel Models With an Application to Gun Control," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 590-605, October.
    4. Fernando Alvarez & Hervé Le Bihan & Francesco Lippi, 2013. "Small and Large Price Changes and the Propagation of Monetary Shocks," EIEF Working Papers Series 1318, Einaudi Institute for Economics and Finance (EIEF), revised Aug 2013.
    5. Chen, Daniel L. & Levonyan, Vardges & Yeh, Susan, 2016. "Policies Affect Preferences: Evidence from Random Variation in Abortion Jurisprudence," IAST Working Papers 16-58, Institute for Advanced Study in Toulouse (IAST).
    6. Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.
    7. Emi Nakamura & Jón Steinsson & Patrick Sun & Daniel Villar, 2018. "The Elusive Costs of Inflation: Price Dispersion during the U.S. Great Inflation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(4), pages 1933-1980.
    8. Chen, Daniel L. & Yeh, Susan, 2022. "How do rights revolutions occur? Free speech and the first amendment," TSE Working Papers 22-1396, Toulouse School of Economics (TSE).
    9. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "High-Dimensional Methods and Inference on Structural and Treatment Effects," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.
    10. Fernando Borraz & Alberto Cavallo & Roberto Rigobon & Leandro Zipitria, 2016. "Distance and Political Boundaries: Estimating Border Effects under Inequality Constraints," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 21(1), pages 3-35, January.
    11. Strittmatter, Anthony & Wunsch, Conny, 2021. "The Gender Pay Gap Revisited with Big Data: Do Methodological Choices Matter?," Working papers 2021/05, Faculty of Business and Economics - University of Basel.
    12. M. Utku Özmen & Orhun Sevinç, 2016. "Price Rigidity in Turkey: Evidence from Micro Data," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 52(4), pages 1029-1045, April.
    13. Rishabh Tyagi & Peter Eibich & Vegard Skirbekk, 2024. "Gender norms and partnership dissolution following involuntary job loss in Germany," MPIDR Working Papers WP-2024-027, Max Planck Institute for Demographic Research, Rostock, Germany.
    14. Chen, Daniel L. & Yeh, Susan, 2016. "How Do Rights Revolutions Occur? Free Speech and the First Amendment," TSE Working Papers 16-705, Toulouse School of Economics (TSE).
    15. Fernando E. Alvarez & Francesco Lippi & Luigi Paciello, 2011. "Optimal Price Setting With Observation and Menu Costs," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 126(4), pages 1909-1960.
    16. Cavallo, Alberto & Rigobon, Roberto, 2011. "The Distribution of the Size of Price Changes," Working Papers 2011-011, Banco Central de Reserva del Perú.
    17. Hulya Bakirtas & Vildan Gulpinar Demirci, 2022. "Can Google Trends data provide information on consumer’s perception regarding hotel brands?," Information Technology & Tourism, Springer, vol. 24(1), pages 57-83, March.
    18. Wu, Zhang & Chong, Terence Tai-Leung, 2019. "Price rigidity in China: Empirical results at home and abroad," China Economic Review, Elsevier, vol. 55(C), pages 218-235.
    19. McKenzie, David & Sansone, Dario, 2017. "Man vs. Machine in Predicting Successful Entrepreneurs: Evidence from a Business Plan Competition in Nigeria," CEPR Discussion Papers 12523, C.E.P.R. Discussion Papers.
    20. Gastón Chaumont & Miguel Fuentes & Felipe Labbé & Alberto Naudon, 2011. "Dinámica de Precios en Chile: Evidencia con datos de Supermercados," Working Papers Central Bank of Chile 642, Central Bank of Chile.

    More about this item

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
    • C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sip:dpaper:12-017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anne Shor (email available below). General contact details of provider: https://edirc.repec.org/data/cestaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.