IDEAS home Printed from https://ideas.repec.org/p/sch/wpaper/453.html
   My bibliography  Save this paper

Assessment of vulnerability to floods in coastal Odisha:A district-level analysis

Author

Listed:
  • Niranjan Padhan
  • S Madheswaran

    (Institute for Social and Economic Change)

Abstract

The study deals with the assessment of flood vulnerability in Coastal districts of Odisha by adopting an integrated approach based on the factors (exposure, susceptibility and resilience) and domains (socio, economic, environmental and physical dimensions) of vulnerability. Both deductive and inductive methods have been adopted for the selection of proxy indicators from each of the domains of vulnerability. Based on the result of sub-indices of each domains, composite flood vulnerability index (FVI) has been developed to identify the intensity of vulnerability among the concerned districts of the state. From the analysis, Kendrapara district emerged as most vulnerable district and Cuttack the least vulnerable among the six coastal districts of the state.

Suggested Citation

  • Niranjan Padhan & S Madheswaran, 2019. "Assessment of vulnerability to floods in coastal Odisha:A district-level analysis," Working Papers 453, Institute for Social and Economic Change, Bangalore.
  • Handle: RePEc:sch:wpaper:453
    as

    Download full text from publisher

    File URL: http://www.isec.ac.in/WP%20453%20-%20Niranjan%20Pradhan%20and%20Madheswaran%20-%20final.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. Balica & N. Wright & F. Meulen, 2012. "A flood vulnerability index for coastal cities and its use in assessing climate change impacts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 73-105, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jhantu Dey & Sayani Mazumder, 2023. "Development of an integrated coastal vulnerability index and its application to the low-lying Mandarmani–Dadanpatrabar coastal sector, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3243-3273, April.
    2. Antje Otto & Kristine Kern & Wolfgang Haupt & Peter Eckersley & Annegret H. Thieken, 2021. "Ranking local climate policy: assessing the mitigation and adaptation activities of 104 German cities," Climatic Change, Springer, vol. 167(1), pages 1-23, July.
    3. Vitor Baccarin Zanetti & Wilson Cabral De Sousa Junior & Débora M. De Freitas, 2016. "A Climate Change Vulnerability Index and Case Study in a Brazilian Coastal City," Sustainability, MDPI, vol. 8(8), pages 1-12, August.
    4. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    5. Li, Sheng & Nadolnyak, Denis & Hartarska, Valentina, 2019. "Agricultural land conversion: Impacts of economic and natural risk factors in a coastal area," Land Use Policy, Elsevier, vol. 80(C), pages 380-390.
    6. Abdur Rahim Hamidi & Jiangwei Wang & Shiyao Guo & Zhongping Zeng, 2020. "Flood vulnerability assessment using MOVE framework: a case study of the northern part of district Peshawar, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 385-408, March.
    7. Yao An & Ning Liu & Lin Zhang & Huanhuan Zheng, 2022. "Adapting to climate risks through cross-border investments: industrial vulnerability and smart city resilience," Climatic Change, Springer, vol. 174(1), pages 1-29, September.
    8. Akhmetkal Medeu & Adilet Valeyev & Farida Akiyanova & Yuisya Lyy & Gulnura Issanova & Yongxiao Ge, 2023. "Assessment of the Vulnerability of the Coast of Lake Alakol to Modern Geomorphological Processes of Relief Formation," Land, MDPI, vol. 12(7), pages 1-21, July.
    9. İsa Çal & Ayşen Ciravoğlu, 2024. "Determining Vulnerability Indicators of Buildings for Sea-Level Rise and Floods in Urban Coastal Areas," Sustainability, MDPI, vol. 17(1), pages 1-30, December.
    10. Caro, María Alejandra Taborda & Vargas, Rubén Darío Sepúlveda & Otero, Carmen Auxiliadora Ortega, 2023. "Qualitative indicators for community water resilience in floodable areas: Agricultural pantry of La Mojana, Colombia," Economia agro-alimentare / Food Economy, Italian Society of Agri-food Economics/Società Italiana di Economia Agro-Alimentare (SIEA), vol. 25(01), May.
    11. Richard Franklin & Jemma King & Peter Aitken & Peter Leggat, 2014. "“Washed away”—assessing community perceptions of flooding and prevention strategies: a North Queensland example," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1977-1998, September.
    12. Carmela Mariano & Marsia Marino, 2023. "The Climate-Proof Planning towards the Ecological Transition: Isola Sacra—Fiumicino (Italy) between Flood Risk and Urban Development Prospectives," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
    13. Abhishek Ghosh, 2017. "Quantitative approach on erosion hazard, vulnerability and risk assessment: case study of Muriganga–Saptamukhi interfluve, Sundarban, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1709-1729, July.
    14. Rex Aurelius C. Robielos & Chiuhsiang Joe Lin & Delia B. Senoro & Froilan P. Ney, 2020. "Development of Vulnerability Assessment Framework for Disaster Risk Reduction at Three Levels of Geopolitical Units in the Philippines," Sustainability, MDPI, vol. 12(21), pages 1-27, October.
    15. Tu Dam Ngoc Le, 0. "Climate change adaptation in coastal cities of developing countries: characterizing types of vulnerability and adaptation options," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 739-761.
    16. Juan Fan & Guangwei Huang, 2020. "Evaluation of Flood Risk Management in Japan through a Recent Case," Sustainability, MDPI, vol. 12(13), pages 1-17, July.
    17. Tu Dam Ngoc Le, 2020. "Climate change adaptation in coastal cities of developing countries: characterizing types of vulnerability and adaptation options," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 739-761, May.
    18. Thuy Linh Nguyen & Chisato Asahi & Thi An Tran & Ngoc Hanh Le, 2022. "Indicator-based approach for flood vulnerability assessment in ancient heritage city of Hoi An, Central Region of Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 2357-2385, November.
    19. Sierra Woodruff & Todd K. BenDor & Aaron L. Strong, 2018. "Fighting the inevitable: infrastructure investment and coastal community adaptation to sea level rise," System Dynamics Review, System Dynamics Society, vol. 34(1-2), pages 48-77, January.
    20. Kerstin Krellenberg & Juliane Welz, 2017. "Assessing Urban Vulnerability in the Context of Flood and Heat Hazard: Pathways and Challenges for Indicator-Based Analysis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 132(2), pages 709-731, June.

    More about this item

    Keywords

    Flood;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sch:wpaper:453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: B B Chand (email available below). General contact details of provider: https://edirc.repec.org/data/iseccin.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.