IDEAS home Printed from https://ideas.repec.org/p/sce/scecf9/612.html
   My bibliography  Save this paper

Heterogeneous Beliefs, Intelligent Agents, and Allocative Efficiency in an Artificial Stock Market

Author

Listed:
  • Jing Yang

    (Concordia University)

Abstract

Various studies of asset markets have shown that traders are capable of learning. In this paper we replace human traders with artificial-intelligent software agents in a simulated stock market. They make predictions about the future, randomly submit their quotes, and transact at certain price. A simplified double auction market mechanism is employed. Three types of agents are included, value traders, momentum traders, and noise traders. Value traders form future expectation with an artificial neural network (ANN). They use ANN to predict dividend growth rate. Three computational experiments in terms of market participants are conducted. Time series from this market are analyzed from the standpoint of well-known empirical features in real markets, including GARCH, CAPM, and EMH tests. I extend earlier research in three ways. First, I employ a double auction market mechanism. I use this mechanism for two reasons. First, major real financial markets are organized as double auctions. Second, laboratory double auctions with human traders are known to yield data that approximate the equilibrium predictions of economic theory in a variety of environments. My second contribution is that I do not focus solely on equilibrium selection and convergence. I emphasize the behavior of the learning and market dynamics themselves. I analyze the portfolio returns and stock returns from this market to see whether the market exhibits characteristics cited in the empirical literature, including volatility persistence, GARCH, portfolio performance evaluation and allocative efficiency. The third extension is that I introduce the noise trader. The noise trader does not act strategically, but rather randomly posts a market order, and the resulting trade quantity is a randomly distributed variable.

Suggested Citation

  • Jing Yang, 1999. "Heterogeneous Beliefs, Intelligent Agents, and Allocative Efficiency in an Artificial Stock Market," Computing in Economics and Finance 1999 612, Society for Computational Economics.
  • Handle: RePEc:sce:scecf9:612
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/cef99/papers/Yang.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brock, William A & LeBaron, Blake D, 1996. "A Dynamic Structural Model for Stock Return Volatility and Trading Volume," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 94-110, February.
    2. Lettau, Martin, 1997. "Explaining the facts with adaptive agents: The case of mutual fund flows," Journal of Economic Dynamics and Control, Elsevier, vol. 21(7), pages 1117-1147, June.
    3. Blake LeBaron, "undated". "Technical Trading Rules and Regime Shifts in Foreign Exchange," Working papers _007, University of Wisconsin - Madison.
    4. De Long, J Bradford & Andrei Shleifer & Lawrence H. Summers & Robert J. Waldmann, 1990. "Noise Trader Risk in Financial Markets," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 703-738, August.
    5. Tirole, Jean, 1982. "On the Possibility of Speculation under Rational Expectations," Econometrica, Econometric Society, vol. 50(5), pages 1163-1181, September.
    6. Kurz, Mordecai, 1994. "On Rational Belief Equilibria," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 4(6), pages 859-876, October.
    7. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    8. Brock, W.A. & Dechert, W.D. & LeBaron, B. & Scheinkman, J.A., 1995. "A Test for Independence Based on the Correlation Dimension," Working papers 9520, Wisconsin Madison - Social Systems.
    9. John Conlisk, 1996. "Why Bounded Rationality?," Journal of Economic Literature, American Economic Association, vol. 34(2), pages 669-700, June.
    10. Arifovic, Jasmina, 1996. "The Behavior of the Exchange Rate in the Genetic Algorithm and Experimental Economies," Journal of Political Economy, University of Chicago Press, vol. 104(3), pages 510-541, June.
    11. Forsythe, Robert & Palfrey, Thomas R & Plott, Charles R, 1982. "Asset Valuation in an Experimental Market," Econometrica, Econometric Society, vol. 50(3), pages 537-567, May.
    12. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    13. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    14. Plott, Charles R & Sunder, Shyam, 1988. "Rational Expectations and the Aggregation of Diverse Information in Laboratory Security Markets," Econometrica, Econometric Society, vol. 56(5), pages 1085-1118, September.
    15. Sanford Grossman, 1989. "The Informational Role of Prices," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262572141, April.
    16. Lux, Thomas, 1998. "The socio-economic dynamics of speculative markets: interacting agents, chaos, and the fat tails of return distributions," Journal of Economic Behavior & Organization, Elsevier, vol. 33(2), pages 143-165, January.
    17. Narayana R. Kocherlakota, 1996. "The Equity Premium: It's Still a Puzzle," Journal of Economic Literature, American Economic Association, vol. 34(1), pages 42-71, March.
    18. Hussman, John P., 1992. "Market efficiency and inefficiency in rational expectations equilibria : Dynamic effects of heterogeneous information and noise," Journal of Economic Dynamics and Control, Elsevier, vol. 16(3-4), pages 655-680.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. LeBaron, Blake & Arthur, W. Brian & Palmer, Richard, 1999. "Time series properties of an artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1487-1516, September.
    2. LeBaron, Blake, 2000. "Agent-based computational finance: Suggested readings and early research," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 679-702, June.
    3. Youwei Li & Xue-Zhong He, 2005. "Long Memory, Heterogeneity, and Trend Chasing," Computing in Economics and Finance 2005 113, Society for Computational Economics.
    4. Brock, William A. & Hommes, Cars H. & Wagener, Florian O. O., 2005. "Evolutionary dynamics in markets with many trader types," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 7-42, February.
    5. J. Doyne Farmer, 2002. "Market force, ecology and evolution," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(5), pages 895-953, November.
    6. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    7. Brock, W.A. & Hommes, C.H. & Wagener, F.O.O., 2001. "Evolutionary Dynamics in Financial Markets With Many Trader Types," CeNDEF Working Papers 01-01, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    8. Xue-Zhong He, 2003. "Asset Pricing, Volatility and Market Behaviour: A Market Fraction Approach," Research Paper Series 95, Quantitative Finance Research Centre, University of Technology, Sydney.
    9. He, Xue-Zhong & Li, Youwei, 2007. "Power-law behaviour, heterogeneity, and trend chasing," Journal of Economic Dynamics and Control, Elsevier, vol. 31(10), pages 3396-3426, October.
    10. Youwei Li & Xue-Zhong (Tony) He, 2005. "Heterogeneity, Profitability and Autocorrelations," Computing in Economics and Finance 2005 244, Society for Computational Economics.
    11. Xue-Zhong He & Youwei Li, 2008. "Heterogeneity, convergence, and autocorrelations," Quantitative Finance, Taylor & Francis Journals, vol. 8(1), pages 59-79.
    12. Gaunersdorfer, Andrea, 2000. "Endogenous fluctuations in a simple asset pricing model with heterogeneous agents," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 799-831, June.
    13. Chiarella, Carl & He, Xue-Zhong & Zwinkels, Remco C.J., 2014. "Heterogeneous expectations in asset pricing: Empirical evidence from the S&P500," Journal of Economic Behavior & Organization, Elsevier, vol. 105(C), pages 1-16.
    14. Paul De Grauwe & Marianna Grimaldi, 2004. "Bubbles and Crashes in a Behavioural Finance Model," CESifo Working Paper Series 1194, CESifo.
    15. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    16. Brock, W.A. & Hommes, C.H., 1997. "Models of Compelxity in Economics and Finance," Working papers 9706, Wisconsin Madison - Social Systems.
    17. Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
    18. Hüsler, A. & Sornette, D. & Hommes, C.H., 2013. "Super-exponential bubbles in lab experiments: Evidence for anchoring over-optimistic expectations on price," Journal of Economic Behavior & Organization, Elsevier, vol. 92(C), pages 304-316.
    19. Xue-Zhong He & Youwei Li, 2017. "The adaptiveness in stock markets: testing the stylized facts in the DAX 30," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 1071-1094, November.
    20. C. H. Hommes, 2001. "Financial markets as nonlinear adaptive evolutionary systems," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 149-167.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf9:612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.