IDEAS home Printed from https://ideas.repec.org/p/sce/scecf6/_039.html
   My bibliography  Save this paper

Massively Parallel Computation of Dynamic Traffic Problems Modeled as Projected Dynamical Systems

Author

Listed:
  • Anna Nagurney

    (Department of Finance and Operations Management, University of Massachusetts)

  • Ding Zhang

    (Department of Industrial Engineering and Operations Research, University of Massachusetts)

Abstract

Traffic congestion in the United States alone results in $n100 billion in lost productivity. In this paper we consider the modeling and solution of dynamic traffic models formulated as projected dynamical systems. The proposed discrete time algorithm, the Euler method, resolves the problem at each step into subproblems in path flow variables, all of which can be solved simultaneously and in closed form. Convergence results are also presented. Finally, the algorithm is implemented on the massively parallel architecture, the Thinking Machine's CM-5, and its performance compared to an implementation on the IBM SP2 on several traffic network examples.

Suggested Citation

  • Anna Nagurney & Ding Zhang, "undated". "Massively Parallel Computation of Dynamic Traffic Problems Modeled as Projected Dynamical Systems," Computing in Economics and Finance 1996 _039, Society for Computational Economics.
  • Handle: RePEc:sce:scecf6:_039
    as

    Download full text from publisher

    File URL: http://www.unige.ch/ce/ce96/ps/nagurne1.eps
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stella Dafermos, 1980. "Traffic Equilibrium and Variational Inequalities," Transportation Science, INFORMS, vol. 14(1), pages 42-54, February.
    2. Smith, M. J., 1979. "The existence, uniqueness and stability of traffic equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 13(4), pages 295-304, December.
    3. Nagurney, Anna & Takayama, Takashi & Zhang, Ding, 1995. "Massively parallel computation of spatial price equilibrium problems as dynamical systems," Journal of Economic Dynamics and Control, Elsevier, vol. 19(1-2), pages 3-37.
    4. Michael J. Smith, 1984. "The Stability of a Dynamic Model of Traffic Assignment---An Application of a Method of Lyapunov," Transportation Science, INFORMS, vol. 18(3), pages 245-252, August.
    5. Hans M. Amman & David A. Kendrick, . "Computational Economics," Online economics textbooks, SUNY-Oswego, Department of Economics, number comp1.
    6. MERCHANT, Deepak K. & NEMHAUSER, George L., 1978. "A model and an algorithm for the dynamic traffic assignment problems," LIDAM Reprints CORE 346, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Deepak K. Merchant & George L. Nemhauser, 1978. "A Model and an Algorithm for the Dynamic Traffic Assignment Problems," Transportation Science, INFORMS, vol. 12(3), pages 183-199, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jurgen A. Doornik & Neil Shephard & David F. Hendry, 2004. "Parallel Computation in Econometrics: A Simplified Approach," Economics Papers 2004-W16, Economics Group, Nuffield College, University of Oxford.
    2. Morozov, Sergei & Mathur, Sudhanshu, 2009. "Massively parallel computation using graphics processors with application to optimal experimentation in dynamic control," MPRA Paper 30298, University Library of Munich, Germany, revised 04 Apr 2011.
    3. Sergei Morozov & Sudhanshu Mathur, 2012. "Massively Parallel Computation Using Graphics Processors with Application to Optimal Experimentation in Dynamic Control," Computational Economics, Springer;Society for Computational Economics, vol. 40(2), pages 151-182, August.
    4. Lilia Maliar, 2015. "Assessing gains from parallel computation on a supercomputer," Economics Bulletin, AccessEcon, vol. 35(1), pages 159-167.
    5. Mathur, Sudhanshu & Morozov, Sergei, 2009. "Massively Parallel Computation Using Graphics Processors with Application to Optimal Experimentation in Dynamic Control," MPRA Paper 16721, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nagurney, Anna & Zhang, Ding, 1998. "A massively parallel implementation of a discrete-time algorithm for the computation of dynamic elastic demand traffic problems modeled as projected dynamical systems," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1467-1485, August.
    2. Jiang, Chenming & Bhat, Chandra R. & Lam, William H.K., 2020. "A bibliometric overview of Transportation Research Part B: Methodological in the past forty years (1979–2019)," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 268-291.
    3. D. Zhang & A. Nagurney, 1997. "Formulation, Stability, and Computation of Traffic Network Equilibria as Projected Dynamical Systems," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 417-444, May.
    4. Wen-Long Jin, 2015. "Advances in Dynamic Traffic Assgmnt: TAC," Networks and Spatial Economics, Springer, vol. 15(3), pages 617-634, September.
    5. José R. Correa & Andreas S. Schulz & Nicolás E. Stier-Moses, 2004. "Selfish Routing in Capacitated Networks," Mathematics of Operations Research, INFORMS, vol. 29(4), pages 961-976, November.
    6. Tong, C. O. & Wong, S. C., 2000. "A predictive dynamic traffic assignment model in congested capacity-constrained road networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(8), pages 625-644, November.
    7. Liu, Yang & Nie, Yu (Marco) & Hall, Jonathan, 2015. "A semi-analytical approach for solving the bottleneck model with general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 56-70.
    8. Watling, David, 1998. "Perturbation stability of the asymmetric stochastic equilibrium assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 32(3), pages 155-171, April.
    9. Liu, Ronghui & Smith, Mike, 2015. "Route choice and traffic signal control: A study of the stability and instability of a new dynamical model of route choice and traffic signal control," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 123-145.
    10. Lie Han, 2022. "Proportional-Switch Adjustment Process with Elastic Demand and Congestion Toll in the Absence of Demand Functions," Networks and Spatial Economics, Springer, vol. 22(4), pages 709-735, December.
    11. Zhang, Ding & Nagurney, Anna & Wu, Jiahao, 2001. "On the equivalence between stationary link flow patterns and traffic network equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 35(8), pages 731-748, September.
    12. Hongbo Ye & Hai Yang, 2017. "Rational Behavior Adjustment Process with Boundedly Rational User Equilibrium," Transportation Science, INFORMS, vol. 51(3), pages 968-980, August.
    13. Zhang, Ding & Nagurney, Anna, 1996. "On the local and global stability of a travel route choice adjustment process," Transportation Research Part B: Methodological, Elsevier, vol. 30(4), pages 245-262, August.
    14. Aalami, Soheila & Kattan, Lina, 2022. "Proportionally fair flow markets for transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 24-41.
    15. Guo, Ren-Yong & Yang, Hai & Huang, Hai-Jun & Tan, Zhijia, 2015. "Link-based day-to-day network traffic dynamics and equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 248-260.
    16. Wei Nai & Zan Yang & Dan Li & Lu Liu & Yuting Fu & Yuao Guo, 2024. "Urban Day-to-Day Travel and Its Development in an Information Environment: A Review," Sustainability, MDPI, vol. 16(6), pages 1-29, March.
    17. Sylvain Sorin & Cheng Wan, 2016. "Finite composite games: Equilibria and dynamics," Post-Print hal-02885860, HAL.
    18. Yang, Fan & Zhang, Ding, 2009. "Day-to-day stationary link flow pattern," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 119-126, January.
    19. Ran, Bin & Boyce, David E., 1995. "Ideal Dynamic User-Optimal Route Choice: A Link-Based Variational Inequality Formulation," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3t4686x6, Institute of Transportation Studies, UC Berkeley.
    20. Xu, Zhandong & Xie, Jun & Liu, Xiaobo & Nie, Yu (Marco), 2020. "Hyperpath-based algorithms for the transit equilibrium assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf6:_039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.