IDEAS home Printed from https://ideas.repec.org/p/sce/scecf5/471.html
   My bibliography  Save this paper

Wavelet Optimized Finite-Difference Approach to Solve Jump-Diffusion type Partial Differential Equation for Option Pricing

Author

Listed:
  • Mohammad R. Rahman
  • Ruppa K. Thulasiram

    (Computer Science University of Manitoba)

  • Parimala Thulasiraman

Abstract

The sine and cosine functions used as the bases in Fourier analysis are very smooth (infinitely differentiable) and very broad (nonzero almost everywhere on the real line), and hence they are not effective for representing functions that change abruptly (jumps) or have highly localized support (diffusive). In response to this shortcoming, there has been intense interest in recent years in a new type of basis functions called wavelets. A given wavelet basis is generated from a single function, called a mother wavelet or scaling function, by dilation and translation. By replicating the mother wavelet at many different scales, it is possible to mimic the behavior of any function; this property of wavelets is called multiresolution. Wavelet is a powerful integral transform technique for studying many problems including financial derivatives such as options. Moreover, the approximation error is much smaller than that of the truncated Fourier expansion. Therefore, one can get better approximation of a function at jump discontinuity with the use of wavelet expansion rather than Fourier expansion. In the current study, we employ wavelet analysis to option pricing problem manifested as partial differential equation (PDE) with jump characteristics. We have used wavelets to develop an optimum finite differencing of the differential equations manifested by complex financial models. In particular, we apply wavelet optimized finite-difference (WOFD) technique on the partial differential equation. We describe how Lagrangian polynomial is used to approximate the partial derivatives on an irregular grid. We then describe how to determine sparse and dense grid with wavelets. Further work on implementation is going on.

Suggested Citation

  • Mohammad R. Rahman & Ruppa K. Thulasiram & Parimala Thulasiraman, 2005. "Wavelet Optimized Finite-Difference Approach to Solve Jump-Diffusion type Partial Differential Equation for Option Pricing," Computing in Economics and Finance 2005 471, Society for Computational Economics.
  • Handle: RePEc:sce:scecf5:471
    as

    Download full text from publisher

    File URL: http://repec.org/sce2005/up.27738.1108441219.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Courtadon, Georges, 1982. "A More Accurate Finite Difference Approximation for the Valuation of Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(5), pages 697-703, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Jérôme Detemple, 2014. "Optimal Exercise for Derivative Securities," Annual Review of Financial Economics, Annual Reviews, vol. 6(1), pages 459-487, December.
    3. Wen Li & Song Wang, 2014. "A numerical method for pricing European options with proportional transaction costs," Journal of Global Optimization, Springer, vol. 60(1), pages 59-78, September.
    4. Manuel Moreno & Javier Navas, 2003. "On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives," Review of Derivatives Research, Springer, vol. 6(2), pages 107-128, May.
    5. Burcu Aydoğan & Ümit Aksoy & Ömür Uğur, 2018. "On the methods of pricing American options: case study," Annals of Operations Research, Springer, vol. 260(1), pages 79-94, January.
    6. Mark Broadie & Jérôme Detemple, 1996. "Recent Advances in Numerical Methods for Pricing Derivative Securities," CIRANO Working Papers 96s-17, CIRANO.
    7. Elli Kraizberg, 2023. "Non-fungible tokens: a bubble or the end of an era of intellectual property rights," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-20, December.
    8. S. Dyrting, 2004. "Pricing equity options everywhere," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 663-676.
    9. Zongwu Cai & Yongmiao Hong, 2013. "Some Recent Developments in Nonparametric Finance," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    10. Riadh Belhaj, 2006. "The Valuation of Options on Bonds with Default Risk," Multinational Finance Journal, Multinational Finance Journal, vol. 10(3-4), pages 277-306, September.
    11. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    12. Zhongdi Cen & Anbo Le & Aimin Xu, 2012. "A Second-Order Difference Scheme for the Penalized Black–Scholes Equation Governing American Put Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 40(1), pages 49-62, June.
    13. Junkee Jeon & Geonwoo Kim, 2022. "Analytic Valuation Formula for American Strangle Option in the Mean-Reversion Environment," Mathematics, MDPI, vol. 10(15), pages 1-19, July.
    14. P. Baecker & G. Grass & U. Hommel, 2010. "Business value and risk in the presence of price controls: an option-based analysis of margin squeeze rules in the telecommunications industry," Annals of Operations Research, Springer, vol. 176(1), pages 311-332, April.
    15. Gerald Buetow, Jr. & Joseph Albert, 1998. "The Pricing of Embedded Options in Real Estate Lease Contracts," Journal of Real Estate Research, American Real Estate Society, vol. 15(3), pages 253-266.
    16. Ureche-Rangau, Loredana & Vaslin, Jacques-Marie, 2023. "Conversion risk on 19th century French consols and embedded options: A simple exercise," Finance Research Letters, Elsevier, vol. 58(PB).
    17. Mojtaba Hajipour & Alaeddin Malek, 2015. "Efficient High-Order Numerical Methods for Pricing of Options," Computational Economics, Springer;Society for Computational Economics, vol. 45(1), pages 31-47, January.
    18. Jonathan A. Batten & Karren Lee-Hwei Khaw & Martin R. Young, 2014. "Convertible Bond Pricing Models," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 775-803, December.
    19. Muthuraman, Kumar, 2008. "A moving boundary approach to American option pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 32(11), pages 3520-3537, November.

    More about this item

    Keywords

    options; wavelets; jump-diffusion; finite-difference;
    All these keywords.

    JEL classification:

    • C - Mathematical and Quantitative Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf5:471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.