IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v4y2004i6p663-676.html
   My bibliography  Save this article

Pricing equity options everywhere

Author

Listed:
  • S. Dyrting

Abstract

Finite difference methods are a popular technique for pricing American options. Since their introduction to finance by Brennan and Schwartz their use has spread from vanilla calls and puts on one stock to path-dependent and exotic options on multiple assets. Despite the breadth of the problems they have been applied to, and the increased sophistication of some of the newer techniques, most approaches to pricing equity options have not adequately addressed the issues of unbounded computational domains and divergent diffusion coefficients. In this article it is shown that these two problems are related and can be overcome using multiple grids. This new technique allows options to be priced for all values of the underlying, and is illustrated using standard put options and the call on the maximum of two stocks. For the latter contract, I also derive a characterization of the asymptotic continuation region in terms of a one-dimensional option pricing problem, and give analytic formulae for the perpetual case.

Suggested Citation

  • S. Dyrting, 2004. "Pricing equity options everywhere," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 663-676.
  • Handle: RePEc:taf:quantf:v:4:y:2004:i:6:p:663-676
    DOI: 10.1080/14697680500039142
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680500039142
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680500039142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boyle, Phelim P & Evnine, Jeremy & Gibbs, Stephen, 1989. "Numerical Evaluation of Multivariate Contingent Claims," The Review of Financial Studies, Society for Financial Studies, vol. 2(2), pages 241-250.
    2. Courtadon, Georges, 1982. "A More Accurate Finite Difference Approximation for the Valuation of Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(5), pages 697-703, December.
    3. Mark Broadie & Jérôme Detemple, 1997. "The Valuation of American Options on Multiple Assets," Mathematical Finance, Wiley Blackwell, vol. 7(3), pages 241-286, July.
    4. M. A. H. Dempster & D. G. Richards, 2000. "Pricing American Options Fitting the Smile," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 157-177, April.
    5. Brennan, Michael J & Schwartz, Eduardo S, 1977. "The Valuation of American Put Options," Journal of Finance, American Finance Association, vol. 32(2), pages 449-462, May.
    6. Nigel Clarke & Kevin Parrott, 1999. "Multigrid for American option pricing with stochastic volatility," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(3), pages 177-195.
    7. Geltner, David & Riddiough, Timothy & Stojanovic, Srdjan, 1996. "Insights on the Effect of Land Use Choice: The Perpetual Option on the Best of Two Underlying Assets," Journal of Urban Economics, Elsevier, vol. 39(1), pages 20-50, January.
    8. M. A. H. Dempster & J. P. Hutton, 1999. "Pricing American Stock Options by Linear Programming," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 229-254, July.
    9. Hull, John & White, Alan, 1990. "Valuing Derivative Securities Using the Explicit Finite Difference Method," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(1), pages 87-100, March.
    10. Johnson, Herb, 1987. "Options on the Maximum or the Minimum of Several Assets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(3), pages 277-283, September.
    11. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    12. Jérôme Barraquand & Thierry Pudet, 1996. "Pricing Of American Path‐Dependent Contingent Claims," Mathematical Finance, Wiley Blackwell, vol. 6(1), pages 17-51, January.
    13. Schwartz, Eduardo S., 1977. "The valuation of warrants: Implementing a new approach," Journal of Financial Economics, Elsevier, vol. 4(1), pages 79-93, January.
    14. Brennan, Michael J. & Schwartz, Eduardo S., 1978. "Finite Difference Methods and Jump Processes Arising in the Pricing of Contingent Claims: A Synthesis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 13(3), pages 461-474, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Broadie & Jérôme Detemple, 1996. "Recent Advances in Numerical Methods for Pricing Derivative Securities," CIRANO Working Papers 96s-17, CIRANO.
    2. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    3. Philipp N. Baecker, 2007. "Real Options and Intellectual Property," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-48264-2, July.
    4. Jonathan Ziveyi, 2011. "The Evaluation of Early Exercise Exotic Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2011, January-A.
    5. Jérôme Detemple, 2014. "Optimal Exercise for Derivative Securities," Annual Review of Financial Economics, Annual Reviews, vol. 6(1), pages 459-487, December.
    6. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    7. Carl Chiarella & Jonathan Ziveyi, 2014. "Pricing American options written on two underlying assets," Quantitative Finance, Taylor & Francis Journals, vol. 14(3), pages 409-426, March.
    8. Ekvall, Niklas, 1996. "A lattice approach for pricing of multivariate contingent claims," European Journal of Operational Research, Elsevier, vol. 91(2), pages 214-228, June.
    9. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    10. Babbs, Simon, 2000. "Binomial valuation of lookback options," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1499-1525, October.
    11. Manuel Moreno & Javier Navas, 2003. "On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives," Review of Derivatives Research, Springer, vol. 6(2), pages 107-128, May.
    12. Bengtsson, Jens & Olhager, Jan, 2002. "Valuation of product-mix flexibility using real options," International Journal of Production Economics, Elsevier, vol. 78(1), pages 13-28, July.
    13. Jonathan Ziveyi, 2011. "The Evaluation of Early Exercise Exotic Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 12, July-Dece.
    14. Ben-Ameur, Hatem & de Frutos, Javier & Fakhfakh, Tarek & Diaby, Vacaba, 2013. "Upper and lower bounds for convex value functions of derivative contracts," Economic Modelling, Elsevier, vol. 34(C), pages 69-75.
    15. Song-Ping Zhu & Xin-Jiang He, 2018. "A hybrid computational approach for option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-16, September.
    16. Lin, Chung-Gee & Yang, Wei-Ning & Chen, Shu-Chuan, 2014. "Analyses of retirement benefits with options," Economic Modelling, Elsevier, vol. 36(C), pages 130-135.
    17. Darae Jeong & Minhyun Yoo & Changwoo Yoo & Junseok Kim, 2019. "A Hybrid Monte Carlo and Finite Difference Method for Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 111-124, January.
    18. Kristensen, Dennis & Mele, Antonio, 2011. "Adding and subtracting Black-Scholes: A new approach to approximating derivative prices in continuous-time models," Journal of Financial Economics, Elsevier, vol. 102(2), pages 390-415.
    19. Benhamou, Eric & Duguet, Alexandre, 2003. "Small dimension PDE for discrete Asian options," Journal of Economic Dynamics and Control, Elsevier, vol. 27(11), pages 2095-2114.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:4:y:2004:i:6:p:663-676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.