IDEAS home Printed from https://ideas.repec.org/p/sce/scecf5/192.html
   My bibliography  Save this paper

Yes, Libor Models can capture Interest Rate Derivatives Skew : A Simple Modelling Approach

Author

Listed:
  • Eymen Errais

    (Managment Science and Engineering Stanford University)

  • Fabio Mercurio

Abstract

We introduce a simple extension of a shifted geometric Brownian motion for modelling forward LIBOR rates under their canonical measures. The extension is based on a parameter uncertainty modelled through a random variable whose value is drawn at an in¯nitesimal time after zero. The shift in the proposed model captures the skew commonly seen in the cap market, whereas the uncertain volatility component allows us to obtain more symmetric implied volatility structures. We show how this model can be calibrated to cap prices. We also propose an analytical approximated formula to price swaptions from the cap calibrated model. Finally, we build the bridge between caps and swaptions market by calibrating the correlation structure to swaption prices, and analysing some implications of the calibrated model parameters

Suggested Citation

  • Eymen Errais & Fabio Mercurio, 2005. "Yes, Libor Models can capture Interest Rate Derivatives Skew : A Simple Modelling Approach," Computing in Economics and Finance 2005 192, Society for Computational Economics.
  • Handle: RePEc:sce:scecf5:192
    as

    Download full text from publisher

    File URL: http://repec.org/sce2005/up.30400.1107018088.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    2. Santa-Clara, Pedro & Sornette, Didier, 2001. "The Dynamics of the Forward Interest Rate Curve with Stochastic String Shocks," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 149-185.
    3. Leif Andersen & Jesper Andreasen, 2000. "Volatility skews and extensions of the Libor market model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 7(1), pages 1-32.
    4. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. "Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    5. Goldstein, Robert S, 2000. "The Term Structure of Interest Rates as a Random Field," The Review of Financial Studies, Society for Financial Studies, vol. 13(2), pages 365-384.
    6. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    7. Feng Zhao & Robert Jarrow & Haitao Li, 2004. "Interest Rate Caps Smile Too! But Can the LIBOR Market Models Capture It?," Econometric Society 2004 North American Winter Meetings 431, Econometric Society.
    8. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    9. Paul Glasserman & S. G. Kou, 2003. "The Term Structure of Simple Forward Rates with Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 383-410, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marc Henrard, 2005. "Libor Market Model and Gaussian HJM explicit approaches to option on composition," Finance 0511016, University Library of Munich, Germany, revised 07 Dec 2005.
    2. N. Moreni & A. Pallavicini, 2014. "Parsimonious HJM modelling for multiple yield curve dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 199-210, February.
    3. Fries, Christian P. & Nigbur, Tobias & Seeger, Norman, 2017. "Displaced relative changes in historical simulation: Application to risk measures of interest rates with phases of negative rates," Journal of Empirical Finance, Elsevier, vol. 42(C), pages 175-198.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    2. Feng Zhao & Robert Jarrow & Haitao Li, 2004. "Interest Rate Caps Smile Too! But Can the LIBOR Market Models Capture It?," Econometric Society 2004 North American Winter Meetings 431, Econometric Society.
    3. Robert Jarrow & Haitao Li & Feng Zhao, 2007. "Interest Rate Caps “Smile” Too! But Can the LIBOR Market Models Capture the Smile?," Journal of Finance, American Finance Association, vol. 62(1), pages 345-382, February.
    4. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 69-96, November.
    5. Heidari, Massoud & Wu, Liuren, 2009. "A Joint Framework for Consistently Pricing Interest Rates and Interest Rate Derivatives," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(3), pages 517-550, June.
    6. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 6, July-Dece.
    7. Da Fonseca, José & Gnoatto, Alessandro & Grasselli, Martino, 2013. "A flexible matrix Libor model with smiles," Journal of Economic Dynamics and Control, Elsevier, vol. 37(4), pages 774-793.
    8. Svenstrup, Mikkel, 2005. "On the suboptimality of single-factor exercise strategies for Bermudan swaptions," Journal of Financial Economics, Elsevier, vol. 78(3), pages 651-684, December.
    9. Bueno-Guerrero, Alberto & Moreno, Manuel & Navas, Javier F., 2020. "Valuation of caps and swaptions under a stochastic string model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    10. Christiansen, Charlotte & Strunk Hansen, Charlotte, 2000. "Implied Volatility of Interest Rate Options: An Empirical Investigation of the Market Model," Finance Working Papers 00-1, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    11. Ernst Eberlein & Fehmi Özkan, 2005. "The Lévy LIBOR model," Finance and Stochastics, Springer, vol. 9(3), pages 327-348, July.
    12. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2005, January-A.
    13. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    14. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    15. Zhanyu Chen & Kai Zhang & Hongbiao Zhao, 2022. "A Skellam market model for loan prime rate options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(3), pages 525-551, March.
    16. Dai, Qiang & Singleton, Kenneth J., 2003. "Fixed-income pricing," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 20, pages 1207-1246, Elsevier.
    17. Jaka Gogala & Joanne E. Kennedy, 2017. "CLASSIFICATION OF TWO- AND THREE-FACTOR TIME-HOMOGENEOUS SEPARABLE LMMs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-44, March.
    18. Raoul Pietersz & Marcel Regenmortel, 2006. "Generic market models," Finance and Stochastics, Springer, vol. 10(4), pages 507-528, December.
      • Pietersz, R. & van Regenmortel, M., 2005. "Generic Market Models," ERIM Report Series Research in Management ERS-2005-010-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
      • Raoul Pietersz & Marcel van Regenmortel, 2005. "Generic Market Models," Finance 0502009, University Library of Munich, Germany.
    19. Longstaff, Francis A. & Santa-Clara, Pedro & Schwartz, Eduardo S., 2001. "Throwing away a billion dollars: the cost of suboptimal exercise strategies in the swaptions market," Journal of Financial Economics, Elsevier, vol. 62(1), pages 39-66, October.
    20. Antonis Papapantoleon & John Schoenmakers & David Skovmand, 2011. "Efficient and accurate log-Lévi approximations to Lévi driven LIBOR models," CREATES Research Papers 2011-22, Department of Economics and Business Economics, Aarhus University.

    More about this item

    Keywords

    Libor Models; Volatility Skew; Interest Rate Derivatives;
    All these keywords.

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf5:192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.