IDEAS home Printed from https://ideas.repec.org/p/sce/scecf0/144.html
   My bibliography  Save this paper

Computational Tools For The Analysis Of Market Risk

Author

Listed:
  • Alberto Suarez

    (Universidad Autnoma de Madrid)

  • Santiago Carrillo

    (Universidad Autnoma de Madrid)

Abstract

The estimation and management of risks is an important and complex task that faces market regulators and financial institutions. It has become apparent that more accurate and reliable quantitative measures of risk are needed to avert, or at least minimize, the undesirable effects on a given portfolio of large fluctuations in the conditions of the market. To accomplish this task, a series of computational tools has been designed, implemented, and incorporated into MatRisk, an integrated environment for risk assessment developed in MatLab. Besides standard measures, such as Value at Risk (VaR), the application MatRisk allows the calculation of other more sophisticated risk measures. These novel risk measures (Shortfall, MaxVaR, conditional VaR) have been introduced by a number of authors to address the inability of VaR to characterize the structure of risk properly.Amongst the extensions of the classical VaR methodology incorporated into MatRisk is the possibility of calculating percentiles for non-normal distributions (e.g., hyperbolic distributions, mixture of Gaussians, and the like), which may provide a more accurate model of the actual behavior of the portfolio returns. The application also allows the calculation of risk measures based on the distribution of extreme events, such as MaxVaR and Expected Shortfall. Finally, risk measures derived from estimates of the conditional probability distribution of returns can be obtained. To produce these conditional risk estimates, MatRisk includes extensions to carry out time analysis in terms of autoregressive models, such as ARCH, GARCH and MixGARCH (probabilistic mixtures of GARCH models).

Suggested Citation

  • Alberto Suarez & Santiago Carrillo, 2000. "Computational Tools For The Analysis Of Market Risk," Computing in Economics and Finance 2000 144, Society for Computational Economics.
  • Handle: RePEc:sce:scecf0:144
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/cef00/papers/paper144.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    2. Hamilton, James D, 1991. "A Quasi-Bayesian Approach to Estimating Parameters for Mixtures of Normal Distributions," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(1), pages 27-39, January.
    3. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    4. Robert Jarrow, 2017. "Derivatives," World Scientific Book Chapters, in: THE ECONOMIC FOUNDATIONS OF RISK MANAGEMENT Theory, Practice, and Applications, chapter 3, pages 19-28, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Buckley, Ian & Saunders, David & Seco, Luis, 2008. "Portfolio optimization when asset returns have the Gaussian mixture distribution," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1434-1461, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Suárez & Santiago Carrillo, 2003. "Computational Tools for the Analysis of Market Risk," Computational Economics, Springer;Society for Computational Economics, vol. 21(1), pages 153-172, February.
    2. Ra l De Jes s Guti rrez & Lidia E. Carvajal Guti rrez & Oswaldo Garcia Salgado, 2023. "Value at Risk and Expected Shortfall Estimation for Mexico s Isthmus Crude Oil Using Long-Memory GARCH-EVT Combined Approaches," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 467-480, July.
    3. Dimitriadis, Timo & Schnaitmann, Julie, 2021. "Forecast encompassing tests for the expected shortfall," International Journal of Forecasting, Elsevier, vol. 37(2), pages 604-621.
    4. Chao Wang & Richard Gerlach, 2021. "A Bayesian realized threshold measurement GARCH framework for financial tail risk forecasting," Papers 2106.00288, arXiv.org, revised Oct 2022.
    5. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    6. Mai Jan-Frederik & Schenk Steffen & Scherer Matthias, 2015. "Analyzing model robustness via a distortion of the stochastic root: A Dirichlet prior approach," Statistics & Risk Modeling, De Gruyter, vol. 32(3-4), pages 177-195, December.
    7. Vladimir Rankovic & Mikica Drenovak & Branko Uroševic & Ranko Jelic, 2016. "Mean Univariate-GARCH VaR Portfolio Optimization: Actual Portfolio Approach," CESifo Working Paper Series 5731, CESifo.
    8. da Costa, B. Freitas Paulo & Pesenti, Silvana M. & Targino, Rodrigo S., 2023. "Risk budgeting portfolios from simulations," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1040-1056.
    9. Mohamed El Ghourabi & Christian Francq & Fedya Telmoudi, 2016. "Consistent Estimation of the Value at Risk When the Error Distribution of the Volatility Model is Misspecified," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 46-76, January.
    10. Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    11. Makushkin, Mikhail & Lapshin, Victor, 2023. "Dynamic Nelson–Siegel model for market risk estimation of bonds: Practical implementation," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 69, pages 5-27.
    12. Sreekha Pullaykkodi & Rajesh H. Acharya, 2024. "The Effects of Overnight Events on Daytime Return: A Market Microstructure Analysis of Market Quality," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 31(3), pages 497-542, September.
    13. Yacine AÏT‐SAHALI & Michael W. Brandt, 2001. "Variable Selection for Portfolio Choice," Journal of Finance, American Finance Association, vol. 56(4), pages 1297-1351, August.
    14. Chen, Cathy W.S. & Hsu, Hsiao-Yun & Watanabe, Toshiaki, 2023. "Tail risk forecasting of realized volatility CAViaR models," Finance Research Letters, Elsevier, vol. 51(C).
    15. Shige Peng & Shuzhen Yang, 2020. "Distributional uncertainty of the financial time series measured by G-expectation," Papers 2011.09226, arXiv.org, revised Jul 2021.
    16. Kavussanos, Manolis G. & Dimitrakopoulos, Dimitris N., 2011. "Market risk model selection and medium-term risk with limited data: Application to ocean tanker freight markets," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 258-268.
    17. Hoogerheide, Lennart & van Dijk, Herman K., 2010. "Bayesian forecasting of Value at Risk and Expected Shortfall using adaptive importance sampling," International Journal of Forecasting, Elsevier, vol. 26(2), pages 231-247, April.
    18. Lakshina, Valeriya, 2020. "Do portfolio investors need to consider the asymmetry of returns on the Russian stock market?," The Journal of Economic Asymmetries, Elsevier, vol. 21(C).
    19. Hoga, Yannick, 2021. "The uncertainty in extreme risk forecasts from covariate-augmented volatility models," International Journal of Forecasting, Elsevier, vol. 37(2), pages 675-686.
    20. Stavroyiannis, S. & Makris, I. & Nikolaidis, V. & Zarangas, L., 2012. "Econometric modeling and value-at-risk using the Pearson type-IV distribution," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 10-17.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf0:144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.