IDEAS home Printed from https://ideas.repec.org/p/rug/rugwps/04-263.html
   My bibliography  Save this paper

Bootstrap Based Bias Correction for Homogeneous Dynamic²² Panels

Author

Listed:
  • G. EVERAERT
  • L. POZZI

Abstract

The within or least squares dummy variable estimator is severely biased in homogeneous dynamic panel models with moderate T. We present a bias correction for this estimator based on an iterative bootstrap procedure. Monte Carlo simulations show that this procedure is a good alternative for the analytical correction by Kiviet (1995, JE). The bootstrap (i) improves on the analytical correction when the variance of the individual effects increases, (ii) is straightforward to extend to less restrictive settings and (iii) allows for a correction of the longrun coefficient that is independent of the correction of the short-run coefficients.

Suggested Citation

  • G. Everaert & L. Pozzi, 2004. "Bootstrap Based Bias Correction for Homogeneous Dynamic²² Panels," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/263, Ghent University, Faculty of Economics and Business Administration.
  • Handle: RePEc:rug:rugwps:04/263
    as

    Download full text from publisher

    File URL: http://wps-feb.ugent.be/Papers/wp_04_263.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Altonji, Joseph G & Segal, Lewis M, 1996. "Small-Sample Bias in GMM Estimation of Covariance Structures," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 353-366, July.
    2. Richard Blundell & Stephen Bond & Frank Windmeijer, 2000. "Estimation in dynamic panel data models: improving on the performance of the standard GMM estimator," IFS Working Papers W00/12, Institute for Fiscal Studies.
    3. Nelson, Charles R & Startz, Richard, 1990. "The Distribution of the Instrumental Variables Estimator and Its t-Ratio When the Instrument Is a Poor One," The Journal of Business, University of Chicago Press, vol. 63(1), pages 125-140, January.
    4. Kiviet, Jan F., 1995. "On bias, inconsistency, and efficiency of various estimators in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 68(1), pages 53-78, July.
    5. Maurice J. G. Bun, 2003. "Bias Correction in the Dynamic Panel Data Model with a Nonscalar Disturbance Covariance Matrix," Econometric Reviews, Taylor & Francis Journals, vol. 22(1), pages 29-58, February.
    6. Judson, Ruth A. & Owen, Ann L., 1999. "Estimating dynamic panel data models: a guide for macroeconomists," Economics Letters, Elsevier, vol. 65(1), pages 9-15, October.
    7. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    8. Badi H. Baltagi & Chihwa Kao, 2000. "Nonstationary Panels, Cointegration in Panels and Dynamic Panels: A Survey," Center for Policy Research Working Papers 16, Center for Policy Research, Maxwell School, Syracuse University.
    9. Pesaran, H. & Smith, R. & Im, K.S., 1995. "Dynamic Linear Models for Heterogeneous Panels," Cambridge Working Papers in Economics 9503, Faculty of Economics, University of Cambridge.
    10. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    11. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    12. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moses Muse Sichei & Chris Harmse & Frans Kanfer, 2007. "Determinants Of South Africa‐Us Intra‐Industry Trade In Services: A Wild Bootstrap Dynamic Panel Data Analysis1," South African Journal of Economics, Economic Society of South Africa, vol. 75(3), pages 521-539, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Griet Malengier & Lorenzo Pozzi, 2005. "Examining Ricardian Equivalence by estimating and bootstrapping a nonlinear dynamic panel model," Money Macro and Finance (MMF) Research Group Conference 2005 61, Money Macro and Finance Research Group.
    2. G. Malengier & L. Pozzi, 2004. "Examining Ricardian Equivalence by estimating and bootstrapping a nonlinear dynamic panel model," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/274, Ghent University, Faculty of Economics and Business Administration.
    3. Scott, K. Rebecca, 2015. "Demand and price uncertainty: Rational habits in international gasoline demand," Energy, Elsevier, vol. 79(C), pages 40-49.
    4. Petreski, Marjan, 2009. "Analysis of exchange-rate regime effect on growth: theoretical channels and empirical evidence with panel data," Economics Discussion Papers 2009-49, Kiel Institute for the World Economy (IfW Kiel).
    5. Flannery, Mark J. & Hankins, Kristine Watson, 2013. "Estimating dynamic panel models in corporate finance," Journal of Corporate Finance, Elsevier, vol. 19(C), pages 1-19.
    6. Jan F. Kiviet, 2005. "Judging Contending Estimators by Simulation: Tournaments in Dynamic Panel Data Models," Tinbergen Institute Discussion Papers 05-112/4, Tinbergen Institute.
    7. Stephen Bond & Anke Hoeffler & Jonathan Temple, 2001. "GMM Estimation of Empirical Growth Models," Economics Papers 2001-W21, Economics Group, Nuffield College, University of Oxford.
    8. Juan Gomez & José Manuel Vassallo & Israel Herraiz, 2016. "Explaining light vehicle demand evolution in interurban toll roads: a dynamic panel data analysis in Spain," Transportation, Springer, vol. 43(4), pages 677-703, July.
    9. Everaert, Gerdie & Pozzi, Lorenzo, 2007. "Bootstrap-based bias correction for dynamic panels," Journal of Economic Dynamics and Control, Elsevier, vol. 31(4), pages 1160-1184, April.
    10. Badi H. Baltagi & Chihwa Kao, 2000. "Nonstationary Panels, Cointegration in Panels and Dynamic Panels: A Survey," Center for Policy Research Working Papers 16, Center for Policy Research, Maxwell School, Syracuse University.
    11. Abonazel, Mohamed R., 2016. "Bias Correction Methods for Dynamic Panel Data Models with Fixed Effects," MPRA Paper 70628, University Library of Munich, Germany.
    12. Bun, Maurice J.G. & Kiviet, Jan F., 2006. "The effects of dynamic feedbacks on LS and MM estimator accuracy in panel data models," Journal of Econometrics, Elsevier, vol. 132(2), pages 409-444, June.
    13. Vinayagathasan, Thanabalasingam, 2013. "Inflation and economic growth: A dynamic panel threshold analysis for Asian economies," Journal of Asian Economics, Elsevier, vol. 26(C), pages 31-41.
    14. Alexander Chudik & M. Hashem Pesaran & Jui‐Chung Yang, 2018. "Half‐panel jackknife fixed‐effects estimation of linear panels with weakly exogenous regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(6), pages 816-836, September.
    15. Martin A. Carree, 2002. "Nearly Unbiased Estimation in Dynamic Panel Data Models with Exogenous Variables," Tinbergen Institute Discussion Papers 02-007/2, Tinbergen Institute.
    16. Brücker, Herbert & Siliverstovs, Boriss, 2006. "Estimating and forecasting European migration : methods, problems and results," Zeitschrift für ArbeitsmarktForschung - Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 39(1), pages 35-56.
    17. Mansor H. Ibrahim, 2018. "Trade–finance complementarity and carbon emission intensity: panel evidence from middle-income countries," Environment Systems and Decisions, Springer, vol. 38(4), pages 489-500, December.
    18. Alexander Chudik & M. Hashem Pesaran & Jui-Chung Yang, 2016. "Half-panel jackknife fixed effects estimation of panels with weakly exogenous regressor," Globalization Institute Working Papers 281, Federal Reserve Bank of Dallas.
    19. Castro, Vítor, 2013. "Macroeconomic determinants of the credit risk in the banking system: The case of the GIPSI," Economic Modelling, Elsevier, vol. 31(C), pages 672-683.
    20. Scott, K. Rebecca, 2011. "Demand and Price Volatility: Rational Habits in International Gasoline Demand," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt2q87432b, Department of Agricultural & Resource Economics, UC Berkeley.

    More about this item

    Keywords

    Bias correction; within estimator; dynamic panel; GMM estimator; Monte Carlo simulation; Bootstrap;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rug:rugwps:04/263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nathalie Verhaeghe (email available below). General contact details of provider: https://edirc.repec.org/data/ferugbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.