IDEAS home Printed from https://ideas.repec.org/p/rtv/ceisrp/492.html
   My bibliography  Save this paper

Peaks, Gaps, and Time Reversibility of Economic Time Series

Author

Abstract

Locating the running maxima and minima of a time series, and measuring the current deviation from them, generates processes that are analytically relevant for the analysis of the business cycle and for characterizing bull and bear phases in financial markets. The measurement of the time distance from the running peak originates a first order Markov chain, whose characteristics can be used for testing time reversibility of economic dynamics and specific types of asymmetries in financial markets. The paper derives the time series properties of the gap process and other related processes that arise from the same measurement context, and proposes new nonparametric tests of time reversibility. Empirical examples illustrate their uses for characterizing the depth of a recession and the duration of bull and a bear market.

Suggested Citation

  • Tommaso Proietti, 2020. "Peaks, Gaps, and Time Reversibility of Economic Time Series," CEIS Research Paper 492, Tor Vergata University, CEIS, revised 17 Jun 2020.
  • Handle: RePEc:rtv:ceisrp:492
    as

    Download full text from publisher

    File URL: https://ceistorvergata.it/RePEc/rpaper/RP492.pdf
    File Function: Main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Beaudry, Paul & Koop, Gary, 1993. "Do recessions permanently change output?," Journal of Monetary Economics, Elsevier, vol. 31(2), pages 149-163, April.
    2. Fryzlewicz, Piotr & Oh, H. S., 2011. "Thick pen transformation for time series," LSE Research Online Documents on Economics 37663, London School of Economics and Political Science, LSE Library.
    3. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    4. Günes Kamber & James Morley & Benjamin Wong, 2018. "Intuitive and Reliable Estimates of the Output Gap from a Beveridge-Nelson Filter," The Review of Economics and Statistics, MIT Press, vol. 100(3), pages 550-566, July.
    5. Racine, Jeffrey S. & Maasoumi, Esfandiar, 2007. "A versatile and robust metric entropy test of time-reversibility, and other hypotheses," Journal of Econometrics, Elsevier, vol. 138(2), pages 547-567, June.
    6. P. Fryzlewicz & H.‐S. Oh, 2011. "Thick pen transformation for time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 499-529, September.
    7. Darolles, Serge & Florens, Jean-Pierre & Gourieroux, Christian, 2004. "Kernel-based nonlinear canonical analysis and time reversibility," Journal of Econometrics, Elsevier, vol. 119(2), pages 323-353, April.
    8. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    9. Chen, Yi-Ting & Chou, Ray Y. & Kuan, Chung-Ming, 2000. "Testing time reversibility without moment restrictions," Journal of Econometrics, Elsevier, vol. 95(1), pages 199-218, March.
    10. James D. Hamilton, 2018. "Why You Should Never Use the Hodrick-Prescott Filter," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 831-843, December.
    11. Ramsey, James B & Rothman, Philip, 1996. "Time Irreversibility and Business Cycle Asymmetry," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 28(1), pages 1-21, February.
    12. Pesaran, M. Hashem & Potter, Simon M., 1997. "A floor and ceiling model of US output," Journal of Economic Dynamics and Control, Elsevier, vol. 21(4-5), pages 661-695, May.
    13. Serge Darolles & Jean-Pierre Florens & Christian Gourieroux, 2004. "Kernel-based nonlinear canonical analysis and time reversibility," Post-Print halshs-00678062, HAL.
    14. Hinich , Melvin J. & Rothman, Philip, 1998. "Frequency-Domain Test Of Time Reversibility," Macroeconomic Dynamics, Cambridge University Press, vol. 2(1), pages 72-88, March.
    15. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    16. Josefine Quast & Maik H. Wolters, 2022. "Reliable Real-Time Output Gap Estimates Based on a Modified Hamilton Filter," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 152-168, January.
    17. Beare, Brendan K. & Seo, Juwon, 2014. "Time Irreversible Copula-Based Markov Models," Econometric Theory, Cambridge University Press, vol. 30(5), pages 923-960, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Giancaterini & Alain Hecq & Claudio Morana, 2022. "Is Climate Change Time-Reversible?," Econometrics, MDPI, vol. 10(4), pages 1-18, December.
    2. Tommaso Proietti, 2024. "Ups and (Draw)Downs," CEIS Research Paper 576, Tor Vergata University, CEIS, revised 03 May 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shibin Zhang, 2023. "A copula spectral test for pairwise time reversibility," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(5), pages 705-729, October.
    2. Beare, Brendan K. & Seo, Juwon, 2014. "Time Irreversible Copula-Based Markov Models," Econometric Theory, Cambridge University Press, vol. 30(5), pages 923-960, October.
    3. Zacharias Psaradakis, 2008. "Assessing Time‐Reversibility Under Minimal Assumptions," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 881-905, September.
    4. McCausland, William J., 2007. "Time reversibility of stationary regular finite-state Markov chains," Journal of Econometrics, Elsevier, vol. 136(1), pages 303-318, January.
    5. Masaru Chiba, 2023. "Robust and efficient specification tests in Markov-switching autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 99-137, April.
    6. Chen, Yi-Ting & Chou, Ray Y. & Kuan, Chung-Ming, 2000. "Testing time reversibility without moment restrictions," Journal of Econometrics, Elsevier, vol. 95(1), pages 199-218, March.
    7. Zacharias Psaradakis & Marián Vávra, 2022. "Using Triples to Assess Symmetry Under Weak Dependence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1538-1551, October.
    8. Firmin Doko Tchatoka & Qazi Haque, 2023. "On bootstrapping tests of equal forecast accuracy for nested models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1844-1864, November.
    9. Alaa Abi Morshed & Elena Andreou & Otilia Boldea, 2018. "Structural Break Tests Robust to Regression Misspecification," Econometrics, MDPI, vol. 6(2), pages 1-39, May.
    10. Berger, Tino & Ochsner, Christian, 2022. "Robust real-time estimates of the German output gap based on a multivariate trend-cycle decomposition," Discussion Papers 35/2022, Deutsche Bundesbank.
    11. Francesco Giancaterini & Alain Hecq & Claudio Morana, 2022. "Is Climate Change Time-Reversible?," Econometrics, MDPI, vol. 10(4), pages 1-18, December.
    12. Dijk, Dick van & Franses, Philip Hans, 1999. "Modeling Multiple Regimes in the Business Cycle," Macroeconomic Dynamics, Cambridge University Press, vol. 3(3), pages 311-340, September.
    13. Zacharias Psaradakis & Marian Vavra, 2018. "Bootstrap Assisted Tests of Symmetry for Dependent Data," Working and Discussion Papers WP 5/2018, Research Department, National Bank of Slovakia.
    14. Fong, Wai Mun, 2003. "Time reversibility tests of volume-volatility dynamics for stock returns," Economics Letters, Elsevier, vol. 81(1), pages 39-45, October.
    15. Zacharias Psaradakis & Martin Sola, 2003. "On detrending and cyclical asymmetry," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(3), pages 271-289.
    16. Yuichi Goto & Tobias Kley & Ria Van Hecke & Stanislav Volgushev & Holger Dette & Marc Hallin, 2021. "The Integrated Copula Spectrum," Working Papers ECARES 2021-29, ULB -- Universite Libre de Bruxelles.
    17. Stypka, Oliver & Wagner, Martin & Grabarczyk, Peter & Kawka, Rafael, 2017. "The Asymptotic Validity of "Standard" Fully Modified OLS Estimation and Inference in Cointegrating Polynomial Regressions," Economics Series 333, Institute for Advanced Studies.
    18. Yi-Ting Chen & Chung-Ming Kuan, 2002. "Time irreversibility and EGARCH effects in US stock index returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 565-578.
    19. Narayan, Paresh Kumar & Popp, Stephan, 2009. "Investigating business cycle asymmetry for the G7 countries: Evidence from over a century of data," International Review of Economics & Finance, Elsevier, vol. 18(4), pages 583-591, October.
    20. Paulo M.D.C. Parente & Richard J. Smith, 2018. "Generalised Empirical Likelihood Kernel Block Bootstrapping," Working Papers REM 2018/55, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.

    More about this item

    Keywords

    Markov chains; Business cycles; Recession duration.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rtv:ceisrp:492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Barbara Piazzi (email available below). General contact details of provider: https://edirc.repec.org/data/csrotit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.