IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v75y2023i5d10.1007_s10463-022-00859-x.html
   My bibliography  Save this article

A copula spectral test for pairwise time reversibility

Author

Listed:
  • Shibin Zhang

    (Shanghai Normal University)

Abstract

In this paper, we propose a new frequency domain test for pairwise time reversibility at any specific couple of quantiles of two-dimensional marginal distribution. The proposed test is applicable to a very broad class of time series, regardless of the existence of moments and Markovian properties. By varying the couple of quantiles, the test can detect any violation of pairwise time reversibility. Our approach is based on an estimator of the $$L^2$$ L 2 -distance between the imaginary part of copula spectral density kernel and its value under the null hypothesis. We show that the limiting distribution of the proposed test statistic is normal and investigate the finite sample performance by means of a simulation study. We illustrate the use of the proposed test by applying it to stock price data.

Suggested Citation

  • Shibin Zhang, 2023. "A copula spectral test for pairwise time reversibility," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(5), pages 705-729, October.
  • Handle: RePEc:spr:aistmt:v:75:y:2023:i:5:d:10.1007_s10463-022-00859-x
    DOI: 10.1007/s10463-022-00859-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-022-00859-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-022-00859-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koenker, Roger & Xiao, Zhijie, 2006. "Quantile Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 980-990, September.
    2. Phillip Wild & John Foster & Melvin. J. Hinich, 2014. "Testing for non-linear and time irreversible probabilistic structure in high frequency financial time series data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 177(3), pages 643-659, June.
    3. Hinich , Melvin J. & Rothman, Philip, 1998. "Frequency-Domain Test Of Time Reversibility," Macroeconomic Dynamics, Cambridge University Press, vol. 2(1), pages 72-88, March.
    4. Mokkadem, Abdelkader, 1988. "Mixing properties of ARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 29(2), pages 309-315, September.
    5. Holger Dette & Efstathios Paparoditis, 2009. "Bootstrapping frequency domain tests in multivariate time series with an application to comparing spectral densities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 831-857, September.
    6. Dette, Holger & Preuß, Philip & Vetter, Mathias, 2011. "A Measure of Stationarity in Locally Stationary Processes With Applications to Testing," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1113-1124.
    7. Stefan Birr & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2017. "Quantile spectral analysis for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1619-1643, November.
    8. Racine, Jeffrey S. & Maasoumi, Esfandiar, 2007. "A versatile and robust metric entropy test of time-reversibility, and other hypotheses," Journal of Econometrics, Elsevier, vol. 138(2), pages 547-567, June.
    9. Dette, Holger & Hildebrandt, Thimo, 2012. "A note on testing hypotheses for stationary processes in the frequency domain," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 101-114, February.
    10. Chen Yi-Ting, 2003. "Testing Serial Independence against Time Irreversibility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 7(3), pages 1-30, October.
    11. Zhang, Shibin, 2019. "Bayesian copula spectral analysis for stationary time series," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 166-179.
    12. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    13. Darolles, Serge & Florens, Jean-Pierre & Gourieroux, Christian, 2004. "Kernel-based nonlinear canonical analysis and time reversibility," Journal of Econometrics, Elsevier, vol. 119(2), pages 323-353, April.
    14. Yi-Ting Chen & Chung-Ming Kuan, 2002. "Time irreversibility and EGARCH effects in US stock index returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 565-578.
    15. Beare, Brendan K. & Seo, Juwon, 2014. "Time Irreversible Copula-Based Markov Models," Econometric Theory, Cambridge University Press, vol. 30(5), pages 923-960, October.
    16. Chen, Yi-Ting & Chou, Ray Y. & Kuan, Chung-Ming, 2000. "Testing time reversibility without moment restrictions," Journal of Econometrics, Elsevier, vol. 95(1), pages 199-218, March.
    17. Ramsey, James B & Rothman, Philip, 1996. "Time Irreversibility and Business Cycle Asymmetry," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 28(1), pages 1-21, February.
    18. Eichler, Michael, 2008. "Testing nonparametric and semiparametric hypotheses in vector stationary processes," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 968-1009, May.
    19. Yongmiao Hong, 2000. "Generalized spectral tests for serial dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(3), pages 557-574.
    20. Holger Dette & Tatjana Kinsvater & Mathias Vetter, 2011. "Testing non‐parametric hypotheses for stationary processes by estimating minimal distances," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(5), pages 447-461, September.
    21. Serge Darolles & Jean-Pierre Florens & Christian Gourieroux, 2004. "Kernel-based nonlinear canonical analysis and time reversibility," Post-Print halshs-00678062, HAL.
    22. Zacharias Psaradakis, 2008. "Assessing Time‐Reversibility Under Minimal Assumptions," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 881-905, September.
    23. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(1), pages 17-39, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beare, Brendan K. & Seo, Juwon, 2014. "Time Irreversible Copula-Based Markov Models," Econometric Theory, Cambridge University Press, vol. 30(5), pages 923-960, October.
    2. Tommaso Proietti, 2023. "Peaks, gaps, and time‐reversibility of economic time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 43-68, January.
    3. Zacharias Psaradakis, 2008. "Assessing Time‐Reversibility Under Minimal Assumptions," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 881-905, September.
    4. Yuichi Goto & Tobias Kley & Ria Van Hecke & Stanislav Volgushev & Holger Dette & Marc Hallin, 2021. "The Integrated Copula Spectrum," Working Papers ECARES 2021-29, ULB -- Universite Libre de Bruxelles.
    5. Jozef Baruník & Tobias Kley, 2019. "Quantile coherency: A general measure for dependence between cyclical economic variables," The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 131-152.
    6. Shibin Zhang & Xin M. Tu, 2022. "Tests for comparing time‐invariant and time‐varying spectra based on the Anderson–Darling statistic," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(3), pages 254-282, August.
    7. McCausland, William J., 2007. "Time reversibility of stationary regular finite-state Markov chains," Journal of Econometrics, Elsevier, vol. 136(1), pages 303-318, January.
    8. Yi-Ting Chen & Chung-Ming Kuan, 2002. "Time irreversibility and EGARCH effects in US stock index returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 565-578.
    9. Yi-Ting Chen, 2008. "A unified approach to standardized-residuals-based correlation tests for GARCH-type models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 111-133.
    10. Preuß, Philip & Hildebrandt, Thimo, 2013. "Comparing spectral densities of stationary time series with unequal sample sizes," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1174-1183.
    11. Phillip Wild & John Foster, 2012. "On testing for non-linear and time irreversible probabilistic structure in high frequency ASX financial time series data," Discussion Papers Series 466, School of Economics, University of Queensland, Australia.
    12. Gilles Zumbach, 2007. "Time reversal invariance in finance," Papers 0708.4022, arXiv.org.
    13. Francesco Giancaterini & Alain Hecq & Claudio Morana, 2022. "Is Climate Change Time-Reversible?," Econometrics, MDPI, vol. 10(4), pages 1-18, December.
    14. Li, Degui & Lu, Zudi & Linton, Oliver, 2012. "Local Linear Fitting Under Near Epoch Dependence: Uniform Consistency With Convergence Rates," Econometric Theory, Cambridge University Press, vol. 28(5), pages 935-958, October.
    15. Degui Li & Oliver Linton & Zudi Lu, 2010. "Loch Linear Fitting under Near Epoch Dependence: Uniform Consistency with Convergence Rate," STICERD - Econometrics Paper Series 549, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    16. Fong, Wai Mun, 2003. "Time reversibility tests of volume-volatility dynamics for stock returns," Economics Letters, Elsevier, vol. 81(1), pages 39-45, October.
    17. Coronado-Ramírez, Semei L. & Porras-Serrano, Jesús & Venegas-Martínez, Francisco, 2011. "Estructuras no lineales en mercados eficientes: el caso IBEX-35," Sección de Estudios de Posgrado e Investigación de la Escuela Superios de Economía del Instituto Politécnico Nacional, in: Perrotini-Hernández, Ignacio (ed.), Economía: Teoría y Métodos, volume 1, chapter 8, pages 116-129, Escuela Superior de Economía, Instituto Politécnico Nacional.
    18. Belaire-Franch, Jorge & Contreras, Dulce, 2003. "Tests for time reversibility: a complementarity analysis," Economics Letters, Elsevier, vol. 81(2), pages 187-195, November.
    19. repec:ebl:ecbull:v:3:y:2004:i:23:p:1-17 is not listed on IDEAS
    20. Sebastian Schweer & Christian H. Weiß, 2016. "Testing for Poisson arrivals in INAR(1) processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 503-524, September.
    21. Steven Cook & Alan Speight, 2006. "International Business Cycle Asymmetry and Time Irreversible Nonlinearities," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(10), pages 1051-1065.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:75:y:2023:i:5:d:10.1007_s10463-022-00859-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.