IDEAS home Printed from https://ideas.repec.org/p/rtr/wpaper/0094.html
   My bibliography  Save this paper

A bayesian model averaging approach with non-informative priors for cost-effectiveness analyses in health economics

Author

Listed:
  • Caterina Conigliani

Abstract

We consider the problem of assessing new and existing technologies for their cost-effectiveness in the case where data on both costs and effects are available from a clinical trial, and we address it by means of the cost-effectiveness acceptability curve. The main difficulty in these analyses is that cost data usually exhibit highly skew and heavy-tailed distributions, so that it can be extremely difficult to produce realistic probabilistic models for the underlying population distribution, and in particular to model accurately the tail of the distribution, which is highly influential in estimating the population mean. Here, in order to integrate the uncertainty about the model into the analysis of cost data and into cost-effectiveness analyses, we consider an approach based on Bayesian model averaging in the particular case of weak prior informations about the unknown parameters of the different models involved in the procedure. The main consequence of this assumption is that the marginal densities required by Bayesian model averaging are undetermined. However in accordance with the theory of partial Bayes factors and in particular of fractional Bayes factors, we suggest replacing each marginal density with a ratio of integrals, that can be efficiently computed via Path Sampling. The results in terms of cost-effectiveness are compared with those obtained with a semi-parametric approach that does not require any assumption about the distribution of costs.

Suggested Citation

  • Caterina Conigliani, 2008. "A bayesian model averaging approach with non-informative priors for cost-effectiveness analyses in health economics," Departmental Working Papers of Economics - University 'Roma Tre' 0094, Department of Economics - University Roma Tre.
  • Handle: RePEc:rtr:wpaper:0094
    as

    Download full text from publisher

    File URL: http://host.uniroma3.it/dipartimenti/economia/pdf/wp94.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    2. A. O’Hagan, 1997. "Properties of intrinsic and fractional Bayes factors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 6(1), pages 101-118, June.
    3. Maiwenn J. Al & Ben A. Van Hout, 2000. "A Bayesian approach to economic analyses of clinical trials: the case of stenting versus balloon angioplasty," Health Economics, John Wiley & Sons, Ltd., vol. 9(7), pages 599-609, October.
    4. Anthony O’Hagan & John Stevens & Jacques Montmartin, 2000. "Inference for the Cost-Effectiveness Acceptability Curve and Cost-Effectiveness Ratio," PharmacoEconomics, Springer, vol. 17(4), pages 339-349, April.
    5. Phillip Dinh & Xiao-Hua Zhou, 2006. "Nonparametric Statistical Methods for Cost-Effectiveness Analyses," Biometrics, The International Biometric Society, vol. 62(2), pages 576-588, June.
    6. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
    7. Caterina Conigliani & Andrea Tancredi, 2005. "A bayesian semi-parametric approach for cost-effectiveness analysis in health economics," Departmental Working Papers of Economics - University 'Roma Tre' 0046, Department of Economics - University Roma Tre.
    8. Caterina Conigliani & Andrea Tancredi, 2003. "Semi-parametric modelling for costs of helt care technologies," Departmental Working Papers of Economics - University 'Roma Tre' 0034, Department of Economics - University Roma Tre.
    9. Simon G. Thompson & Richard M. Nixon, 2005. "How Sensitive Are Cost-Effectiveness Analyses to Choice of Parametric Distributions?," Medical Decision Making, , vol. 25(4), pages 416-423, July.
    10. Anthony O'Hagan & John W. Stevens, 2003. "Assessing and comparing costs: how robust are the bootstrap and methods based on asymptotic normality?," Health Economics, John Wiley & Sons, Ltd., vol. 12(1), pages 33-49, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel A. Negrín & Julian Nam & Andrew H. Briggs, 2017. "Bayesian Solutions for Handling Uncertainty in Survival Extrapolation," Medical Decision Making, , vol. 37(4), pages 367-376, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caterina Conigliani & Andrea Tancredi, 2009. "A Bayesian model averaging approach for cost‐effectiveness analyses," Health Economics, John Wiley & Sons, Ltd., vol. 18(7), pages 807-821, July.
    2. Caterina Conigliani & Andrea Tancredi, 2006. "Comparing parametric and semi-parametric approaches for bayesian cost-effectiveness analyses in health economics," Departmental Working Papers of Economics - University 'Roma Tre' 0064, Department of Economics - University Roma Tre.
    3. Borislava Mihaylova & Andrew Briggs & Anthony O'Hagan & Simon G. Thompson, 2011. "Review of statistical methods for analysing healthcare resources and costs," Health Economics, John Wiley & Sons, Ltd., vol. 20(8), pages 897-916, August.
    4. Hajargasht, Gholamreza & Rao, D.S. Prasada, 2019. "Multilateral index number systems for international price comparisons: Properties, existence and uniqueness," Journal of Mathematical Economics, Elsevier, vol. 83(C), pages 36-47.
    5. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    6. Thompson, Simon G. & Nixon, Richard M. & Grieve, Richard, 2006. "Addressing the issues that arise in analysing multicentre cost data, with application to a multinational study," Journal of Health Economics, Elsevier, vol. 25(6), pages 1015-1028, November.
    7. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    8. Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2008. "Marginal likelihoods for non-Gaussian models using auxiliary mixture sampling," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4608-4624, June.
    9. Matthieu Droumaguet & Tomasz Wozniak, 2012. "Bayesian Testing of Granger Causality in Markov-Switching VARs," Economics Working Papers ECO2012/06, European University Institute.
    10. Villani, Mattias, 2005. "Bayesian Inference of General Linear Restrictions on the Cointegration Space," Working Paper Series 189, Sveriges Riksbank (Central Bank of Sweden).
    11. Woźniak, Tomasz, 2015. "Testing causality between two vectors in multivariate GARCH models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 876-894.
    12. Bebu, Ionut & Luta, George & Mathew, Thomas & Kennedy, Paul A. & Agan, Brian K., 2016. "Parametric cost-effectiveness inference with skewed data," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 210-220.
    13. Chib, Siddhartha, 2004. "Markov Chain Monte Carlo Technology," Papers 2004,22, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    14. Mohamed El Alili & Johanna M. van Dongen & Jonas L. Esser & Martijn W. Heymans & Maurits W. van Tulder & Judith E. Bosmans, 2022. "A scoping review of statistical methods for trial‐based economic evaluations: The current state of play," Health Economics, John Wiley & Sons, Ltd., vol. 31(12), pages 2680-2699, December.
    15. Arnaud Dufays, 2014. "On the conjugacy of off-line and on-line Sequential Monte Carlo Samplers," Working Paper Research 263, National Bank of Belgium.
    16. Moreno, Elías & Girón, F.J. & Vázquez-Polo, F.J. & NegrI´n, M.A., 2010. "Optimal healthcare decisions: Comparing medical treatments on a cost-effectiveness basis," European Journal of Operational Research, Elsevier, vol. 204(1), pages 180-187, July.
    17. Ardia, David & Baştürk, Nalan & Hoogerheide, Lennart & van Dijk, Herman K., 2012. "A comparative study of Monte Carlo methods for efficient evaluation of marginal likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3398-3414.
    18. Tsiakas, Ilias, 2008. "Overnight information and stochastic volatility: A study of European and US stock exchanges," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 251-268, February.
    19. Drew Creal, 2012. "A Survey of Sequential Monte Carlo Methods for Economics and Finance," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
    20. Chuku Chuku & Paul Middleditch, 2020. "Characterizing Monetary and Fiscal Policy Rules and Interactions when Commodity Prices Matter," Manchester School, University of Manchester, vol. 88(3), pages 373-404, June.

    More about this item

    Keywords

    Bayesian model averaging; Cost data; Health economics; MCMC; Non-informative priors;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rtr:wpaper:0094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Telephone for information (email available below). General contact details of provider: https://edirc.repec.org/data/dero3it.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.