IDEAS home Printed from https://ideas.repec.org/p/rsc/rsceui/2010-02.html
   My bibliography  Save this paper

Catching the maximum market value of electricity storage – technical, economic and regulatory aspect

Author

Listed:
  • Xian HE
  • Georg ZACHMANN

Abstract

The creation of competitive wholesale electricity markets allows to evaluate the “arbitrage value” of an electricity storage unit, which stems from buying and storing electricity when prices are low, and selling it when prices are high. The focus of this paper is to demonstrate that the arbitrage value can be highly sensitive with respect to the dimensioning of an electricity storage unit. A simulation model is explored to calculate the arbitrage value of different storage units by finding the optimal hourly operating strategy during one-year period. The results of simulation show that optimizing the dimensioning of a storage unit is as important as choosing the fittest technology. Furthermore we provide evidence that the optimal set-up of a storage unit can adapt to exogenous factors such as grid tariff and local electricity price characteristics. These findings suggest that the maximisation of market value of electricity storage should be based on the optimisation of the dimensioning of the storage unit in specific economic and regulatory environment.

Suggested Citation

  • Xian HE & Georg ZACHMANN, 2010. "Catching the maximum market value of electricity storage – technical, economic and regulatory aspect," RSCAS Working Papers 2010/02, European University Institute.
  • Handle: RePEc:rsc:rsceui:2010/02
    as

    Download full text from publisher

    File URL: http://cadmus.eui.eu/dspace/bitstream/1814/13080/1/RSCAS_2010_02.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sioshansi, Ramteen & Denholm, Paul & Jenkin, Thomas & Weiss, Jurgen, 2009. "Estimating the value of electricity storage in PJM: Arbitrage and some welfare effects," Energy Economics, Elsevier, vol. 31(2), pages 269-277, March.
    2. Dufo-López, Rodolfo & Bernal-Agustín, José L. & Domínguez-Navarro, José A., 2009. "Generation management using batteries in wind farms: Economical and technical analysis for Spain," Energy Policy, Elsevier, vol. 37(1), pages 126-139, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Loisel, Rodica & Mercier, Arnaud & Gatzen, Christoph & Elms, Nick & Petric, Hrvoje, 2010. "Valuation framework for large scale electricity storage in a case with wind curtailment," Energy Policy, Elsevier, vol. 38(11), pages 7323-7337, November.
    2. Monica Giulietti & Luigi Grossi, 2013. "Revenues from storage in a competitive electricity market: Empirical evidence from Great Britain," Working Papers 2013/37, Institut d'Economia de Barcelona (IEB).
    3. Kondziella, Hendrik & Bruckner, Thomas, 2016. "Flexibility requirements of renewable energy based electricity systems – a review of research results and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 10-22.
    4. Shcherbakova, Anastasia & Kleit, Andrew & Cho, Joohyun, 2014. "The value of energy storage in South Korea’s electricity market: A Hotelling approach," Applied Energy, Elsevier, vol. 125(C), pages 93-102.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monica Giulietti & Luigi Grossi, 2013. "Revenues from storage in a competitive electricity market: Empirical evidence from Great Britain," Working Papers 2013/37, Institut d'Economia de Barcelona (IEB).
    2. Rious, Vincent & Perez, Yannick, 2014. "Review of supporting scheme for island powersystem storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 754-765.
    3. Telaretti, E. & Graditi, G. & Ippolito, M.G. & Zizzo, G., 2016. "Economic feasibility of stationary electrochemical storages for electric bill management applications: The Italian scenario," Energy Policy, Elsevier, vol. 94(C), pages 126-137.
    4. Graditi, G. & Ippolito, M.G. & Telaretti, E. & Zizzo, G., 2016. "Technical and economical assessment of distributed electrochemical storages for load shifting applications: An Italian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 515-523.
    5. Berrada, Asmae & Loudiyi, Khalid, 2016. "Operation, sizing, and economic evaluation of storage for solar and wind power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1117-1129.
    6. Vincent Rious & Yannick Perez, 2012. "What type(s) of support schemes for storage in island power systems?," RSCAS Working Papers 2012/70, European University Institute.
    7. Pedro Crespo Del Granado & Stein Wallace & Zhan Pang, 2016. "The impact of wind uncertainty on the strategic valuation of distributed electricity storage," Computational Management Science, Springer, vol. 13(1), pages 5-27, January.
    8. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    9. McConnell, Dylan & Forcey, Tim & Sandiford, Mike, 2015. "Estimating the value of electricity storage in an energy-only wholesale market," Applied Energy, Elsevier, vol. 159(C), pages 422-432.
    10. Martin Weibelzahl & Alexandra Märtz, 2020. "Optimal storage and transmission investments in a bilevel electricity market model," Annals of Operations Research, Springer, vol. 287(2), pages 911-940, April.
    11. Deetjen, Thomas A. & Vitter, J. Scott & Reimers, Andrew S. & Webber, Michael E., 2018. "Optimal dispatch and equipment sizing of a residential central utility plant for improving rooftop solar integration," Energy, Elsevier, vol. 147(C), pages 1044-1059.
    12. Dusonchet, L. & Favuzza, S. & Massaro, F. & Telaretti, E. & Zizzo, G., 2019. "Technological and legislative status point of stationary energy storages in the EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 158-167.
    13. Pusceddu, Elian & Zakeri, Behnam & Castagneto Gissey, Giorgio, 2021. "Synergies between energy arbitrage and fast frequency response for battery energy storage systems," Applied Energy, Elsevier, vol. 283(C).
    14. Wonchang Hur & Yongma Moon & Kwangsup Shin & Wooje Kim & Suchul Nam & Kijun Park, 2015. "Economic Value of Li-ion Energy Storage System in Frequency Regulation Application from Utility Firm’s Perspective in Korea," Energies, MDPI, vol. 8(6), pages 1-18, May.
    15. Sioshansi, Ramteen & Denholm, Paul & Jenkin, Thomas, 2011. "A comparative analysis of the value of pure and hybrid electricity storage," Energy Economics, Elsevier, vol. 33(1), pages 56-66, January.
    16. Yunfeng Wen & Chuangxin Guo & Shufeng Dong, 2014. "Coordinated Control of Distributed and Bulk Energy Storage for Alleviation of Post-Contingency Overloads," Energies, MDPI, vol. 7(3), pages 1-22, March.
    17. He, Xian & Delarue, Erik & D'haeseleer, William & Glachant, Jean-Michel, 2011. "A novel business model for aggregating the values of electricity storage," Energy Policy, Elsevier, vol. 39(3), pages 1575-1585, March.
    18. Lamp, Stefan & Samano, Mario, 2022. "Large-scale battery storage, short-term market outcomes, and arbitrage," Energy Economics, Elsevier, vol. 107(C).
    19. de Sisternes, Fernando J. & Jenkins, Jesse D. & Botterud, Audun, 2016. "The value of energy storage in decarbonizing the electricity sector," Applied Energy, Elsevier, vol. 175(C), pages 368-379.
    20. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.

    More about this item

    Keywords

    Electricity storage; arbitrage value; regulation;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsc:rsceui:2010/02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RSCAS web unit (email available below). General contact details of provider: https://edirc.repec.org/data/rsiueit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.