IDEAS home Printed from https://ideas.repec.org/p/ris/fcnwpa/2023_015.html
   My bibliography  Save this paper

A Multi-Criteria Assessment Framework for Direct Load Control in Residential Buildings from an Occupants’ Perspective

Author

Listed:
  • Liepold, Constanze

    (E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN))

  • Fabianek, Paul

    (E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN))

  • Madlener, Reinhard

    (E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN))

Abstract

Based on economic and occupants-relevant criteria, this paper proposes an assessment framework for direct load control (DLC) schemes, using the Analytic Hierarchy Process AHP) approach for a multi-criteria decision analysis. For DLC, as a form of demand response, a third-party provider (e.g., grid operator, aggregator) is allowed to control or limit the residential electric load after sending a control signal. The assessment framework enables the transparent evaluation of different DLC approaches from a residential perspective can be done transparently using our assessment framework. The relevant criteria for the evaluation were derived from literature. Five criteria were found to be particularly relevant for the evaluation of DLC approaches (ordered by descending): financial compensation, guaranteed comfort, control, transparency, as well as frequency and duration. The assessment framework includes value scores, which represent the degree to which a specific DLC approach meets a given evaluation criterion, and combines them with the criteria weights derived in the AHP. The framework seems useful for grid operators, aggregators, and policy-makers that need to find better ways to design and implement demand response measures in the private household sector and such which that are at the same time acceptable to occupants.

Suggested Citation

  • Liepold, Constanze & Fabianek, Paul & Madlener, Reinhard, 2023. "A Multi-Criteria Assessment Framework for Direct Load Control in Residential Buildings from an Occupants’ Perspective," FCN Working Papers 15/2023, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
  • Handle: RePEc:ris:fcnwpa:2023_015
    as

    Download full text from publisher

    File URL: https://www.fcn.eonerc.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaciniwgz
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Newsham, Guy R. & Bowker, Brent G., 2010. "The effect of utility time-varying pricing and load control strategies on residential summer peak electricity use: A review," Energy Policy, Elsevier, vol. 38(7), pages 3289-3296, July.
    2. Nikolas Schöne & Kathrin Greilmeier & Boris Heinz, 2022. "Survey-Based Assessment of the Preferences in Residential Demand Response on the Island of Mayotte," Energies, MDPI, vol. 15(4), pages 1-30, February.
    3. Yilmaz, Selin & Chanez, Cédric & Cuony, Peter & Patel, Martin Kumar, 2022. "Analysing utility-based direct load control programmes for heat pumps and electric vehicles considering customer segmentation," Energy Policy, Elsevier, vol. 164(C).
    4. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    5. Xu, Xiaojing & Chen, Chien-fei & Zhu, Xiaojuan & Hu, Qinran, 2018. "Promoting acceptance of direct load control programs in the United States: Financial incentive versus control option," Energy, Elsevier, vol. 147(C), pages 1278-1287.
    6. Liepold, Constanze & Fabianek, Paul & Madlener, Reinhard, 2023. "Tradable Performance Standards for a Greener Automobile Sector: An Economists’ Appraisal of the German Greenhouse Gas Mitigation Quota," FCN Working Papers 9/2023, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    7. Liepold, Constanze & Fabianek, Paul & Madlener, Reinhard, 2023. "A Critical Evaluation of the 2022 Greenhouse Gas Mitigation Quota in Germany from an Environmental Economics and Policy Perspective," FCN Working Papers 10/2023, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    8. Nygrén, Nina A. & Kontio, Panu & Lyytimäki, Jari & Varho, Vilja & Tapio, Petri, 2015. "Early adopters boosting the diffusion of sustainable small-scale energy solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 79-87.
    9. Sridhar, Araavind & Honkapuro, Samuli & Ruiz, Fredy & Stoklasa, Jan & Annala, Salla & Wolff, Annika & Rautiainen, Antti, 2023. "Residential consumer preferences to demand response: Analysis of different motivators to enroll in direct load control demand response," Energy Policy, Elsevier, vol. 173(C).
    10. Li, Wenbo & Long, Ruyin & Chen, Hong & Geng, Jichao, 2017. "A review of factors influencing consumer intentions to adopt battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 318-328.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Casas Ferrús, M. Nieves & Ruhnau, Oliver & Madlener, Reinhard, 2023. "Portfolio Effects in Green Hydrogen Production Under Temporal Matching Requirements," FCN Working Papers 18/2023, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sridhar, Araavind & Honkapuro, Samuli & Ruiz, Fredy & Stoklasa, Jan & Annala, Salla & Wolff, Annika & Rautiainen, Antti, 2023. "Toward residential flexibility—Consumer willingness to enroll household loads in demand response," Applied Energy, Elsevier, vol. 342(C).
    2. Sridhar, Araavind & Honkapuro, Samuli & Ruiz, Fredy & Stoklasa, Jan & Annala, Salla & Wolff, Annika & Rautiainen, Antti, 2023. "Residential consumer preferences to demand response: Analysis of different motivators to enroll in direct load control demand response," Energy Policy, Elsevier, vol. 173(C).
    3. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    4. Julien Lancelot Michellod & Declan Kuch & Christian Winzer & Martin K. Patel & Selin Yilmaz, 2022. "Building Social License for Automated Demand-Side Management—Case Study Research in the Swiss Residential Sector," Energies, MDPI, vol. 15(20), pages 1-25, October.
    5. Nikolas Schöne & Kathrin Greilmeier & Boris Heinz, 2022. "Survey-Based Assessment of the Preferences in Residential Demand Response on the Island of Mayotte," Energies, MDPI, vol. 15(4), pages 1-30, February.
    6. Yilmaz, Selin & Xu, Xiaojing & Cabrera, Daniel & Chanez, Cédric & Cuony, Peter & Patel, Martin K., 2020. "Analysis of demand-side response preferences regarding electricity tariffs and direct load control: Key findings from a Swiss survey," Energy, Elsevier, vol. 212(C).
    7. Casas Ferrús, M. Nieves & Ruhnau, Oliver & Madlener, Reinhard, 2023. "Portfolio Effects in Green Hydrogen Production Under Temporal Matching Requirements," FCN Working Papers 18/2023, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    8. Yilmaz, Selin & Chanez, Cédric & Cuony, Peter & Patel, Martin Kumar, 2022. "Analysing utility-based direct load control programmes for heat pumps and electric vehicles considering customer segmentation," Energy Policy, Elsevier, vol. 164(C).
    9. Fabianek, Paul & Glensk, Barbara & Madlener, Reinhard, 2024. "A sequential real options analysis for renewable power-to-hydrogen plants for Germany and California," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    10. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    11. Jochen Wulf, 2020. "Development of an AHP hierarchy for managing omnichannel capabilities: a design science research approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 39-68, April.
    12. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    13. D’Inverno, Giovanna & Carosi, Laura & Romano, Giulia & Guerrini, Andrea, 2018. "Water pollution in wastewater treatment plants: An efficiency analysis with undesirable output," European Journal of Operational Research, Elsevier, vol. 269(1), pages 24-34.
    14. Huang, Youlin & Qian, Lixian, 2021. "Consumer adoption of electric vehicles in alternative business models," Energy Policy, Elsevier, vol. 155(C).
    15. Nermin Kişi, 2019. "A Strategic Approach to Sustainable Tourism Development Using the A’WOT Hybrid Method: A Case Study of Zonguldak, Turkey," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    16. Eid, Cherrelle & Codani, Paul & Perez, Yannick & Reneses, Javier & Hakvoort, Rudi, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 237-247.
    17. Nicole D. Sintov & P. Wesley Schultz, 2017. "Adjustable Green Defaults Can Help Make Smart Homes More Sustainable," Sustainability, MDPI, vol. 9(4), pages 1-12, April.
    18. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Odigie, O. & Munda, J.L., 2018. "A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, Elsevier, vol. 228(C), pages 1853-1869.
    19. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    20. Patricija Bajec & Danijela Tuljak-Suban, 2019. "An Integrated Analytic Hierarchy Process—Slack Based Measure-Data Envelopment Analysis Model for Evaluating the Efficiency of Logistics Service Providers Considering Undesirable Performance Criteria," Sustainability, MDPI, vol. 11(8), pages 1-18, April.

    More about this item

    Keywords

    Direct Load Control; residential buildings; Analytic Hierarchy Process; Germany;
    All these keywords.

    JEL classification:

    • A11 - General Economics and Teaching - - General Economics - - - Role of Economics; Role of Economists
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:fcnwpa:2023_015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hendrik Schmitz (email available below). General contact details of provider: https://edirc.repec.org/data/fceonde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.