IDEAS home Printed from https://ideas.repec.org/p/ris/ewikln/2021_003.html
   My bibliography  Save this paper

Analysing the Impact of a Renewable Hydrogen Quota on the European Electricity and Natural Gas Markets

Author

Listed:
  • Schlund, David

    (Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI))

  • Schönfisch, Max

    (Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI))

Abstract

We perform a model-based analysis of the impact of a renewable hydrogen quota on EU gas and electricity markets. By comparing a scenario in which a renewable hydrogen quota with tradable certificates is imposed on final gas consumption in the sectors of the economy outside the EU ETS with a reference scenario without a quota, we assess price, quantity and welfare effects. Our model simulations show that the hydrogen quota leads to a significant expansion in renewable energy sources (RES) capacity to produce renewable hydrogen and synthetic methane with Power-to-Gas (PtG) technologies. On the electricity market, the price increases substantially, rising by up to 12%—mostly due to increasing emission allowance prices—leading to a higher surplus for power producers. The quota’s primary beneficiaries in the power sector are renewable energy producers. On the gas market, the quota leads to a small decrease in prices (by a maximum of -3%) and gas producer surpluses. Quota obliged gas consumers, mainly households, commercial and small industrial consumers, carry the largest part of the burden associated with the obligation. Overall, the quota leads to the redistribution of welfare from these consumers to RES and PtG producers and a significant decline in total welfare.

Suggested Citation

  • Schlund, David & Schönfisch, Max, 2021. "Analysing the Impact of a Renewable Hydrogen Quota on the European Electricity and Natural Gas Markets," EWI Working Papers 2021-3, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
  • Handle: RePEc:ris:ewikln:2021_003
    as

    Download full text from publisher

    File URL: https://www.ewi.uni-koeln.de/cms/wp-content/uploads/2021/03/EWI_WP_21-03_Analysing_the_Impact_of_a_Renewable_Hydrogen_Quota_Schlund_Schoenfisch.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Helgeson, Broghan & Peter, Jakob, 2020. "The role of electricity in decarbonizing European road transport – Development and assessment of an integrated multi-sectoral model," Applied Energy, Elsevier, vol. 262(C).
    2. Lynch, Muireann & Devine, Mel T. & Bertsch, Valentin, 2019. "The role of power-to-gas in the future energy system: Market and portfolio effects," Energy, Elsevier, vol. 185(C), pages 1197-1209.
    3. Haas, R. & Eichhammer, W. & Huber, C. & Langniss, O. & Lorenzoni, A. & Madlener, R. & Menanteau, P. & Morthorst, P. -E. & Martins, A. & Oniszk, A. & Schleich, J. & Smith, A. & Vass, Z. & Verbruggen, A, 2004. "How to promote renewable energy systems successfully and effectively," Energy Policy, Elsevier, vol. 32(6), pages 833-839, April.
    4. Olga Chiappinelli & Karsten Neuhoff, 2017. "Time-Consistent Carbon Pricing," Discussion Papers of DIW Berlin 1710, DIW Berlin, German Institute for Economic Research.
    5. Lochner, Stefan, 2011. "Identification of congestion and valuation of transport infrastructures in the European natural gas market," Energy, Elsevier, vol. 36(5), pages 2483-2492.
    6. Philippe Menanteau & Dominique Finon & Marie-Laure Lamy, 2003. "Prices versus quantities :environmental policies for promoting the development of renewable energy," Post-Print halshs-00480457, HAL.
    7. Scarlat, Nicolae & Dallemand, Jean-François & Fahl, Fernando, 2018. "Biogas: Developments and perspectives in Europe," Renewable Energy, Elsevier, vol. 129(PA), pages 457-472.
    8. Speirs, Jamie & Balcombe, Paul & Johnson, Erin & Martin, Jeanne & Brandon, Nigel & Hawkes, Adam, 2018. "A greener gas grid: What are the options," Energy Policy, Elsevier, vol. 118(C), pages 291-297.
    9. Richter, Jan, 2011. "DIMENSION - A Dispatch and Investment Model for European Electricity Markets," EWI Working Papers 2011-3, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    10. Olga Chiappinelli & Karsten Neuhoff, 2020. "Time-Consistent Carbon Pricing: The Role of Carbon Contracts for Differences," Discussion Papers of DIW Berlin 1859, DIW Berlin, German Institute for Economic Research.
    11. Stephen P. Holland & Jonathan E. Hughes & Christopher R. Knittel, 2009. "Greenhouse Gas Reductions under Low Carbon Fuel Standards?," American Economic Journal: Economic Policy, American Economic Association, vol. 1(1), pages 106-146, February.
    12. Dieckhöner, Caroline & Lochner, Stefan & Lindenberger, Dietmar, 2013. "European natural gas infrastructure: The impact of market developments on gas flows and physical market integration," Applied Energy, Elsevier, vol. 102(C), pages 994-1003.
    13. Quarton, Christopher J. & Samsatli, Sheila, 2018. "Power-to-gas for injection into the gas grid: What can we learn from real-life projects, economic assessments and systems modelling?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 302-316.
    14. Dominique Finon & Philippe Menanteau, 2003. "The Static and Dynamic Efficiency of Instruments of Promotion of Renewables," Post-Print halshs-00001300, HAL.
    15. Ordoudis, Christos & Pinson, Pierre & Morales, Juan M., 2019. "An Integrated Market for Electricity and Natural Gas Systems with Stochastic Power Producers," European Journal of Operational Research, Elsevier, vol. 272(2), pages 642-654.
    16. Menanteau, Philippe & Finon, Dominique & Lamy, Marie-Laure, 2003. "Prices versus quantities: choosing policies for promoting the development of renewable energy," Energy Policy, Elsevier, vol. 31(8), pages 799-812, June.
    17. Kildegaard, Arne, 2008. "Green certificate markets, the risk of over-investment, and the role of long-term contracts," Energy Policy, Elsevier, vol. 36(9), pages 3413-3421, September.
    18. Robert Gross & Richard Hanna, 2019. "Path dependency in provision of domestic heating," Nature Energy, Nature, vol. 4(5), pages 358-364, May.
    19. Leonidas Mantzos & Tobias Wiesenthal & Frederik Neuwahl & Mate Rozsai, 2019. "The POTEnCIA Central scenario: An EU energy outlook to 2050," JRC Research Reports JRC118353, Joint Research Centre.
    20. Roach, Martin & Meeus, Leonardo, 2020. "The welfare and price effects of sector coupling with power-to-gas," Energy Economics, Elsevier, vol. 86(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Begoña Vivanco-Martín & Alfredo Iranzo, 2023. "Analysis of the European Strategy for Hydrogen: A Comprehensive Review," Energies, MDPI, vol. 16(9), pages 1-36, May.
    2. Zhang, Jiekuan, 2023. "Emissions trading scheme and energy consumption and output structure: Evidence from China," Renewable Energy, Elsevier, vol. 219(P1).
    3. Antweiler, Werner & Schlund, David, 2024. "The emerging international trade in hydrogen: Environmental policies, innovation, and trade dynamics," Journal of Environmental Economics and Management, Elsevier, vol. 127(C).
    4. Christoph Loschan & Daniel Schwabeneder & Matthias Maldet & Georg Lettner & Hans Auer, 2023. "Hydrogen as Short-Term Flexibility and Seasonal Storage in a Sector-Coupled Electricity Market," Energies, MDPI, vol. 16(14), pages 1-35, July.
    5. Lifeng Du & Yanmei Yang & Luli Zhou & Min Liu, 2024. "Greenhouse Gas Reduction Potential and Economics of Green Hydrogen via Water Electrolysis: A Systematic Review of Value-Chain-Wide Decarbonization," Sustainability, MDPI, vol. 16(11), pages 1-37, May.
    6. Wang, Tao & Liang, He & Luo, Zhenmin & Yu, Jianliang & Cheng, Fangming & Zhao, Jingyu & Su, Bin & Li, Ruikang & Wang, Xuqing & Feng, Zairong & Deng, Jun, 2023. "Thermal suppression effects of diluent gas on the deflagration behavior of H2–air mixtures," Energy, Elsevier, vol. 272(C).
    7. Liu, Ying & Feng, Chao, 2023. "Promoting renewable energy through national energy legislation," Energy Economics, Elsevier, vol. 118(C).
    8. Roach, Martin & Meeus, Leonardo, 2023. "An energy system model to study the impact of combining carbon pricing with direct support for renewable gases," Ecological Economics, Elsevier, vol. 210(C).
    9. Schlund, David & Theile, Philipp, 2022. "Simultaneity of green energy and hydrogen production: Analysing the dispatch of a grid-connected electrolyser," Energy Policy, Elsevier, vol. 166(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schlund, David & Schönfisch, Max, 2021. "Analysing the impact of a renewable hydrogen quota on the European electricity and natural gas markets," Applied Energy, Elsevier, vol. 304(C).
    2. del Río, Pablo, 2012. "The dynamic efficiency of feed-in tariffs: The impact of different design elements," Energy Policy, Elsevier, vol. 41(C), pages 139-151.
    3. Felix Groba & Barbara Breitschopf, 2013. "Impact of Renewable Energy Policy and Use on Innovation: A Literature Review," Discussion Papers of DIW Berlin 1318, DIW Berlin, German Institute for Economic Research.
    4. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    5. Paul Koutstaal & Michiel Bijlsma & Gijsbert Zwart & X. van Tilburg, 2009. "Market performance and distributional effects on renewable energy markets," CPB Document 190.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
    6. Bongsuk Sung & Myung-Bae Yeom & Hong-Gi Kim, 2017. "Eco-Efficiency of Government Policy and Exports in the Bioenergy Technology Market," Sustainability, MDPI, vol. 9(9), pages 1-18, September.
    7. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
    8. Mulder, Peter & de Groot, Henri L.F., 2013. "Dutch sectoral energy intensity developments in international perspective, 1987–2005," Energy Policy, Elsevier, vol. 52(C), pages 501-512.
    9. Darmani, Anna & Rickne, Annika & Hidalgo, Antonio & Arvidsson, Niklas, 2016. "When outcomes are the reflection of the analysis criteria: A review of the tradable green certificate assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 372-381.
    10. Dominique Finon, 2006. "The Social Efficiency Of Instruments For The Promotion Of Renewable Energies In The Liberalised Power Industry," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 77(3), pages 309-343, September.
    11. Christoph Heinzel & Thomas Winkler, 2011. "Economic functioning and politically pragmatic justification of tradable green certificates in Poland," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 13(2), pages 157-175, June.
    12. Till Requate, 2015. "Green tradable certificates versus feed-in tariffs in the promotion of renewable energy shares," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(2), pages 211-239, April.
    13. Avri Eitan, 2021. "Promoting Renewable Energy to Cope with Climate Change—Policy Discourse in Israel," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    14. Lewis, Joanna I. & Wiser, Ryan H., 2007. "Fostering a renewable energy technology industry: An international comparison of wind industry policy support mechanisms," Energy Policy, Elsevier, vol. 35(3), pages 1844-1857, March.
    15. Nagl, Stephan, 2013. "Prices vs. Quantities: Incentives for Renewable Power Generation - Numerical Analysis for the European Power Market," EWI Working Papers 2013-4, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    16. Sovacool, Benjamin K., 2010. "A comparative analysis of renewable electricity support mechanisms for Southeast Asia," Energy, Elsevier, vol. 35(4), pages 1779-1793.
    17. Frei, Fanny & Loder, Allister & Bening, Catharina R., 2018. "Liquidity in green power markets – An international review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 674-690.
    18. Longo, Alberto & Markandya, Anil & Petrucci, Marta, 2008. "The internalization of externalities in the production of electricity: Willingness to pay for the attributes of a policy for renewable energy," Ecological Economics, Elsevier, vol. 67(1), pages 140-152, August.
    19. Stokes, Leah C., 2013. "The politics of renewable energy policies: The case of feed-in tariffs in Ontario, Canada," Energy Policy, Elsevier, vol. 56(C), pages 490-500.
    20. Mezher, Toufic & Dawelbait, Gihan & Abbas, Zeina, 2012. "Renewable energy policy options for Abu Dhabi: Drivers and barriers," Energy Policy, Elsevier, vol. 42(C), pages 315-328.

    More about this item

    Keywords

    Hydrogen; power-to-gas; quota obligation; renewable energy support;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:ewikln:2021_003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sabine Williams (email available below). General contact details of provider: https://edirc.repec.org/data/ewikode.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.