IDEAS home Printed from https://ideas.repec.org/p/rif/dpaper/1076.html
   My bibliography  Save this paper

Biotechnology as a Competitive Edge for the Finnish Forest Cluster

Author

Listed:
  • Hakala, Terhi
  • Haltia, Olli
  • Hermans, Raine
  • Kulvik, Martti
  • Nikinmaa, Hanna
  • Porcar-Castell, Albert
  • Pursula, Tiina

Abstract

In this study we have collected information by interviewing all identified parties within the Finnish forest sector who might have a potential biotechnology connection : university research groups, research institutions, small and medium-sized biotechnology-companies and up to the largest forest companies. The ultimate goal was to assess how resources have been allocated and biotechnologies utilized within the value chain of the entire forest sector. This study aimed at providing answers to the following questions : What are the current Finnish academic resources and projects related to forest industry biotechnology? How much does the Finnish forest cluster invest in biotechnology R&D activity, and what are the key application areas in the value chain? How well do the academic resources, company R&D investments and research needs converge to help secure the future competitiveness of the Finnish forest industries? In order to answer the questions above, the study approached the matter in consecutive steps. First, the existing forest industry related biotechnological knowledge base within the academia on one hand, and the resource base among firms on the other hand, were mapped. Following up on that, we evaluated the sales expectations of forestry related biotechnological applications within the domestic forestry cluster itself, other potential domestic industries and global export markets. The third step assessed whether the development of forestry related biotechnological applications is justifiable in the framework of comparative advantage. This was accomplished by comparing the relevant existing knowledge and other resource bases to their sales expectations. In order to evaluate the potential of biotechnology in the entire forest industry value chain, the study assessed four value chain modules. Module 1 represents the beginning of the value chain : forestry applications. Module 2 consists of the development of wood products, module 3 is related to the pulp and paper industry, and module 4 to utilization side streams for bioenergy, biochemicals and other food or pharmaceutical applications. The assessment of module 1 implies that there is a constant lack of resources. Basic research conducts some relatively long projects, which often seem too time-consuming in applied research and corporate R&D. There seems to be only few active links between the academic research projects and companies. Many new technologies already exist but since the individual forest owners hardly have incentives to invest in R&D due to e.g. the long breeding cycle, collaboration with companies seems as the only potential pathway to commercialization of forestry related biotechnologies. There were few biotechnology-based projects within the module 2. The research and product development seems to focus on physical modifications, and composite research is based on chemistry. Module 3, paper, pulp and board industry, seems to be the most active in research and product development activity. Their products generate positive cash flows, and research projects are abundantly funded. The companies are closely involved in the research projects as financiers and collaborators. This involvement impacts on the nature of the research, which seems highly applicable and linked closely to industrial applications. Consequently, biotechnology applications are already used in the pulp and paper industry. Some biotechnology applications are adopted rapidly. They, such as enzymes in reducing paper machine runnability problems, do not affect the quality of the fibers, intermediate or end products and are thus easier to take into use in production scale. We observed the research and product development within module 4 as a high priority for both the academia and industry. The research is anticipated to grow strongly and even more than in other modules. Biotechnologies are applied as substitutes to chemical and thermal technologies. However, all of these fields of technology are developed and applied by the industry. This provides some important implications for technology development and innovation policy. Due to the fuzziness between technology border-lines, it seems misleading to prioritize biotechnologies over some other technology; in contrast, the most efficient technology should be preferred. Accordingly, technology subsidies might be most efficient if the public technology programmes would be based on application segments instead of a specific technology. Our assessment of international patenting activity raised some interesting notions. Finland seemed to be comparatively most specialized in plant genetic engineering, food and food additive, and waste disposal and the environment applications. However, biotechnology based biofuels are not included as a source of comparative advantage, which also stresses the importance of parallel development of biotechnologies and other technology fields. A potential source of value creation could be the utilization of process side streams more efficiently, including refinement of by-products such as tall oil, to products with higher value added in other application areas.The paper and board making might also be strongly influenced by new packaging solutions, materials and methods; these utilize, however, only rarely or never biotechnologies as such. Finland has a good overall and mainly publicly maintained infrastructure. If the raw materials high quality and some special features can compensate the relatively low growth rates, Finland should be able to attract the multinational pulp and paper industry also in the long term. We conclude that the development of biotechnologies should not contain any intrinsic value per se. The commercial value of the biotechnology could be benchmarked with the value of alternative technologies; and consequently, biotechnology could become part of the technology options for companies active in established and conventional industries. The Finnish forest cluster has financial resources to commercialize any new technology that can increase the process efficiency or provide other economic benefits in new application areas. This is a reason why we see this area exceptionally promising compared to any other high technology field without such a financial backbone.

Suggested Citation

  • Hakala, Terhi & Haltia, Olli & Hermans, Raine & Kulvik, Martti & Nikinmaa, Hanna & Porcar-Castell, Albert & Pursula, Tiina, 2007. "Biotechnology as a Competitive Edge for the Finnish Forest Cluster," Discussion Papers 1076, The Research Institute of the Finnish Economy.
  • Handle: RePEc:rif:dpaper:1076
    as

    Download full text from publisher

    File URL: http://www.etla.fi/wp-content/uploads/2012/09/dp1076.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kotiranta, Annu – Kulvik & Tahvanainen, Antti – Trieste, . "Raiders Of Lost Value," ETLA B, The Research Institute of the Finnish Economy, number 267, June.

    More about this item

    Keywords

    competitive advantage; forestry; paper and pulp industry; process side streams; value chain;
    All these keywords.

    JEL classification:

    • L69 - Industrial Organization - - Industry Studies: Manufacturing - - - Other
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • O34 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Intellectual Property and Intellectual Capital

    NEP fields

    This paper has been announced in the following NEP Reports:

    Lists

    This item is featured on the following reading lists, Wikipedia, or ReplicationWiki pages:
    1. Technology Assessment

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rif:dpaper:1076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kaija Hyvönen-Rajecki (email available below). General contact details of provider: https://edirc.repec.org/data/etlaafi.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.