IDEAS home Printed from https://ideas.repec.org/p/qut/auncer/2016_03.html
   My bibliography  Save this paper

Investigating the Relationship Between DSGE and SVAR Models

Author

Listed:
  • Adrian Pagan

    (UniMelb)

  • Tim Robinson

    (UniMelb)

Abstract

DSGE models often contain variables for which data is not observed when estimating. Although DSGE models generally imply that there is a finite order SVAR in all the variables this may no longer be true for SVARs just in observable variables, and so there is a VAR-truncation problem. The paper examines this issue. It looks at five different studies using DSGE models that appear in the literature. Generally it emerges that the truncation issue is probably not that important, except possibly in small open economy models with external debt. Even when there is no truncation problem in VARs which control the dynamics) the structural impulse responses from both models may be different due to differing initial responses. It is shown that DSGE models incorporate some strong restrictions on the nature of SVAR models and these would need to employed for the two approaches to give the same initial estimates.

Suggested Citation

  • Adrian Pagan & Tim Robinson, 2016. "Investigating the Relationship Between DSGE and SVAR Models," NCER Working Paper Series 112, National Centre for Econometric Research.
  • Handle: RePEc:qut:auncer:2016_03
    as

    Download full text from publisher

    File URL: http://www.ncer.edu.au/papers/documents/WP112.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christopher J. Erceg & Luca Guerrieri & Christopher Gust, 2005. "Can Long-Run Restrictions Identify Technology Shocks?," Journal of the European Economic Association, MIT Press, vol. 3(6), pages 1237-1278, December.
    2. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Thomas J. Sargent & Mark W. Watson, 2007. "ABCs (and Ds) of Understanding VARs," American Economic Review, American Economic Association, vol. 97(3), pages 1021-1026, June.
    3. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models—Rejoinder," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 211-219.
    4. Hendry, David F & Mizon, Grayham E, 1978. "Serial Correlation as a Convenient Simplification, not a Nuisance: A Comment on a Study of the Demand for Money by the Bank of England," Economic Journal, Royal Economic Society, vol. 88(351), pages 549-563, September.
    5. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    6. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2007. "Assessing Structural VARs," NBER Chapters, in: NBER Macroeconomics Annual 2006, Volume 21, pages 1-106, National Bureau of Economic Research, Inc.
    7. Philip Liu & Konstantinos Theodoridis, 2012. "DSGE Model Restrictions for Structural VAR Identification," International Journal of Central Banking, International Journal of Central Banking, vol. 8(4), pages 61-95, December.
    8. Alejandro Justiniano & Bruce Preston, 2010. "Monetary policy and uncertainty in an empirical small open-economy model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 93-128.
    9. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    10. Franchi, Massimo & Vidotto, Anna, 2013. "A check for finite order VAR representations of DSGE models," Economics Letters, Elsevier, vol. 120(1), pages 100-103.
    11. Raffaella Giacomini, 2013. "The relationship between DSGE and VAR models," CeMMAP working papers CWP21/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Marimon, Ramon & Scott, Andrew (ed.), 1999. "Computational Methods for the Study of Dynamic Economies," OUP Catalogue, Oxford University Press, number 9780198294979.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    2. Sam Ouliaris & Adrian Pagan, 2022. "Three Basic Issues that Arise when Using Informational Restrictions in SVARs," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(1), pages 1-20, February.
    3. Xianglong Liu & Adrian R. Pagan & Tim Robinson, 2018. "Critically Assessing Estimated DSGE Models: A Case Study of a Multi‐sector Model," The Economic Record, The Economic Society of Australia, vol. 94(307), pages 349-371, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    2. Massimo Franchi & Paolo Paruolo, 2015. "Minimality of State Space Solutions of DSGE Models and Existence Conditions for Their VAR Representation," Computational Economics, Springer;Society for Computational Economics, vol. 46(4), pages 613-626, December.
    3. Raffaella Giacomini, 2013. "The relationship between DSGE and VAR models," CeMMAP working papers CWP21/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Soccorsi, Stefano, 2016. "Measuring nonfundamentalness for structural VARs," Journal of Economic Dynamics and Control, Elsevier, vol. 71(C), pages 86-101.
    5. Özer Karagedikli & Troy Matheson & Christie Smith & Shaun P. Vahey, 2010. "RBCs AND DSGEs: THE COMPUTATIONAL APPROACH TO BUSINESS CYCLE THEORY AND EVIDENCE," Journal of Economic Surveys, Wiley Blackwell, vol. 24(1), pages 113-136, February.
    6. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    7. Massimo Franchi, 2013. "Comment on: Ravenna, F., 2007. Vector autoregressions and reduced form representations of DSGE models. Journal of Monetary Economics 54, 2048-2064," DSS Empirical Economics and Econometrics Working Papers Series 2013/2, Centre for Empirical Economics and Econometrics, Department of Statistics, "Sapienza" University of Rome.
    8. Ca’ Zorzi, Michele & Kolasa, Marcin & Rubaszek, Michał, 2017. "Exchange rate forecasting with DSGE models," Journal of International Economics, Elsevier, vol. 107(C), pages 127-146.
    9. Angelini, Giovanni, 2020. "Bootstrap lag selection in DSGE models with expectations correction," Econometrics and Statistics, Elsevier, vol. 14(C), pages 38-48.
    10. Castelnuovo, Efrem, 2016. "Modest macroeconomic effects of monetary policy shocks during the great moderation: An alternative interpretation," Journal of Macroeconomics, Elsevier, vol. 47(PB), pages 300-314.
    11. Acosta, Pablo A. & Lartey, Emmanuel K.K. & Mandelman, Federico S., 2009. "Remittances and the Dutch disease," Journal of International Economics, Elsevier, vol. 79(1), pages 102-116, September.
    12. Efrem Castelnuovo, 2016. "Monetary policy shocks and Cholesky VARs: an assessment for the Euro area," Empirical Economics, Springer, vol. 50(2), pages 383-414, March.
    13. Raffaella Giacomini, 2013. "The relationship between DSGE and VAR models," CeMMAP working papers 21/13, Institute for Fiscal Studies.
    14. Thomai Filippeli & Konstantinos Theodoridis, 2015. "DSGE priors for BVAR models," Empirical Economics, Springer, vol. 48(2), pages 627-656, March.
    15. Kocięcki, Andrzej & Kolasa, Marcin, 2023. "A solution to the global identification problem in DSGE models," Journal of Econometrics, Elsevier, vol. 236(2).
    16. Aruoba, S. Borağan & Bocola, Luigi & Schorfheide, Frank, 2017. "Assessing DSGE model nonlinearities," Journal of Economic Dynamics and Control, Elsevier, vol. 83(C), pages 34-54.
    17. Giovanni Angelini & Luca Fanelli, 2016. "Misspecification and Expectations Correction in New Keynesian DSGE Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(5), pages 623-649, October.
    18. Robert Kollmann, 2013. "Global Banks, Financial Shocks, and International Business Cycles: Evidence from an Estimated Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(s2), pages 159-195, December.
    19. Mertens, Elmar, 2012. "Are spectral estimators useful for long-run restrictions in SVARs?," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1831-1844.
    20. McKnight, Stephen & Mihailov, Alexander & Pompa Rangel, Antonio, 2020. "What do Latin American inflation targeters care about? A comparative Bayesian estimation of central bank preferences," Journal of Macroeconomics, Elsevier, vol. 63(C).

    More about this item

    Keywords

    Impulse Responses to DSGE; SVAR;

    JEL classification:

    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation
    • E13 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Neoclassical

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qut:auncer:2016_03. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: School of Economics and Finance (email available below). General contact details of provider: https://edirc.repec.org/data/ncerrau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.