IDEAS home Printed from https://ideas.repec.org/p/qmw/qmwecw/769.html
   My bibliography  Save this paper

A Time Varying DSGE Model with Financial Frictions

Author

Listed:
  • Ana Beatriz Galvão

    (University of Warwick)

  • Liudas Giraitis

    (Queen Mary University of London)

  • George Kapetanios

    (Queen Mary University of London)

  • Katerina Petrova

    (Queen Mary University of London)

Abstract

We build a time varying DSGE model with financial frictions in order to evaluate changes in the responses of the macroeconomy to financial friction shocks. Using US data, we find that the transmission of the financial friction shock to economic variables, such as output growth, has not changed in the last 30 years. The volatility of the financial friction shock, however, has changed, so that output responses to a one-standard deviation shock increase twofold in the 2007-2011 period in comparison with the 1985-2006 period. The time varying DSGE model with financial frictions improves the accuracy of forecasts of output growth and inflation during the tranquil period of 2000-2006, while delivering similar performance to the fixed coefficient DSGE model for the 2007-2012 period.

Suggested Citation

  • Ana Beatriz Galvão & Liudas Giraitis & George Kapetanios & Katerina Petrova, 2015. "A Time Varying DSGE Model with Financial Frictions," Working Papers 769, Queen Mary University of London, School of Economics and Finance.
  • Handle: RePEc:qmw:qmwecw:769
    as

    Download full text from publisher

    File URL: https://www.qmul.ac.uk/sef/media/econ/research/workingpapers/2015/items/wp769-1.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Richard Clarida & Jordi Galí & Mark Gertler, 2000. "Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 115(1), pages 147-180.
    2. Ana Beatriz Galvão & Liudas Giraitis & George Kapetanios & Katerina Petrova, 2015. "A Bayesian Local Likelihood Method for Modelling Parameter Time Variation in DSGE Models," Working Papers 770, Queen Mary University of London, School of Economics and Finance.
    3. Marvin Goodfriend & Robert G. King, 1997. "The New Neoclassical Synthesis and the Role of Monetary Policy," NBER Chapters, in: NBER Macroeconomics Annual 1997, Volume 12, pages 231-296, National Bureau of Economic Research, Inc.
    4. Canova, Fabio & Sala, Luca, 2009. "Back to square one: Identification issues in DSGE models," Journal of Monetary Economics, Elsevier, vol. 56(4), pages 431-449, May.
    5. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    6. Andrew Foerster & Juan F. Rubio‐Ramírez & Daniel F. Waggoner & Tao Zha, 2016. "Perturbation methods for Markov‐switching dynamic stochastic general equilibrium models," Quantitative Economics, Econometric Society, vol. 7(2), pages 637-669, July.
    7. Thomas Philippon, 2009. "The Bond Market's q," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 124(3), pages 1011-1056.
    8. Ben S. Bernanke & Julio J. Rotemberg (ed.), 1997. "NBER Macroeconomics Annual 1997," MIT Press Books, The MIT Press, edition 1, volume 1, number 026252242x, April.
    9. Del Negro, Marco & Hasegawa, Raiden B. & Schorfheide, Frank, 2016. "Dynamic prediction pools: An investigation of financial frictions and forecasting performance," Journal of Econometrics, Elsevier, vol. 192(2), pages 391-405.
    10. Luca Gambetti & Jordi Galí, 2009. "On the Sources of the Great Moderation," American Economic Journal: Macroeconomics, American Economic Association, vol. 1(1), pages 26-57, January.
    11. Alejandro Justiniano & Giorgio E. Primiceri, 2008. "The Time-Varying Volatility of Macroeconomic Fluctuations," American Economic Review, American Economic Association, vol. 98(3), pages 604-641, June.
    12. Maik H. Wolters, 2015. "Evaluating Point and Density Forecasts of DSGE Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 74-96, January.
    13. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    14. Frank Smets & Raf Wouters, 2005. "Comparing shocks and frictions in US and euro area business cycles: a Bayesian DSGE Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 161-183.
    15. Peter N. Ireland, 2004. "Technology Shocks in the New Keynesian Model," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 923-936, November.
    16. Wolters, Maik H., 2011. "Forecasting under Model Uncertainty," VfS Annual Conference 2011 (Frankfurt, Main): The Order of the World Economy - Lessons from the Crisis 48723, Verein für Socialpolitik / German Economic Association.
    17. Frank Schorfheide, 2005. "Learning and Monetary Policy Shifts," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 392-419, April.
    18. Frank Schorfheide, 2000. "Loss function-based evaluation of DSGE models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 645-670.
    19. Christopher A. Sims & Tao Zha, 2006. "Were There Regime Switches in U.S. Monetary Policy?," American Economic Review, American Economic Association, vol. 96(1), pages 54-81, March.
    20. Bernanke, Ben S. & Gertler, Mark & Gilchrist, Simon, 1999. "The financial accelerator in a quantitative business cycle framework," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 21, pages 1341-1393, Elsevier.
    21. James H. Stock & Mark W. Watson, 2003. "How did leading indicator forecasts perform during the 2001 recession?," Economic Quarterly, Federal Reserve Bank of Richmond, vol. 89(Sum), pages 71-90.
    22. Francesco Bianchi, 2013. "Regime Switches, Agents' Beliefs, and Post-World War II U.S. Macroeconomic Dynamics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(2), pages 463-490.
    23. Luca Benati & Paolo Surico, 2009. "VAR Analysis and the Great Moderation," American Economic Review, American Economic Association, vol. 99(4), pages 1636-1652, September.
    24. Andrew Foerster & Juan F. Rubio-Ramirez & Daniel F. Waggoner & Tao Zha, 2013. "Perturbation methods for Markov-switching DSGE models," FRB Atlanta Working Paper 2013-01, Federal Reserve Bank of Atlanta.
    25. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
    26. Blanchard, Olivier Jean & Kahn, Charles M, 1980. "The Solution of Linear Difference Models under Rational Expectations," Econometrica, Econometric Society, vol. 48(5), pages 1305-1311, July.
    27. Chris Woolston, 2014. "Rice," Nature, Nature, vol. 514(7524), pages 49-49, October.
    28. Roberta Cardani & Alessia Paccagnini & Stefania Villa, 2015. "Forecasting in a DSGE Model with Banking Intermediation: Evidence from the US," Working Papers 292, University of Milano-Bicocca, Department of Economics, revised Feb 2015.
    29. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez, 2008. "How Structural Are Structural Parameters?," NBER Chapters, in: NBER Macroeconomics Annual 2007, Volume 22, pages 83-137, National Bureau of Economic Research, Inc.
    30. Negro, Marco Del & Schorfheide, Frank, 2013. "DSGE Model-Based Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 57-140, Elsevier.
    31. Lawrence J. Christiano & Roberto Motto & Massimo Rostagno, 2014. "Risk Shocks," American Economic Review, American Economic Association, vol. 104(1), pages 27-65, January.
    32. Canova, Fabio, 2006. "Monetary Policy and the Evolution of the US Economy," CEPR Discussion Papers 5467, C.E.P.R. Discussion Papers.
    33. Liudas Giraitis & George Kapetanios & Anne Wetherilt & Filip ŽIKEŠ, 2016. "Estimating the Dynamics and Persistence of Financial Networks, with an Application to the Sterling Money Market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 58-84, January.
    34. Efrem Castelnuovo, 2012. "Estimating the Evolution of Money’s Role in the U.S. Monetary Business Cycle," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(1), pages 23-52, February.
    35. Timothy Cogley & Thomas J. Sargent, 2002. "Evolving Post-World War II US Inflation Dynamics," NBER Chapters, in: NBER Macroeconomics Annual 2001, Volume 16, pages 331-388, National Bureau of Economic Research, Inc.
    36. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    37. Michael Johannes & Lars A. Lochstoer & Yiqun Mou, 2016. "Learning about Consumption Dynamics," Journal of Finance, American Finance Association, vol. 71(2), pages 551-600, April.
    38. Julio J. Rotemberg & Michael Woodford, 1997. "An Optimization-Based Econometric Framework for the Evaluation of Monetary Policy," NBER Chapters, in: NBER Macroeconomics Annual 1997, Volume 12, pages 297-361, National Bureau of Economic Research, Inc.
    39. Simon Gilchrist & Egon Zakrajsek, 2012. "Credit Spreads and Business Cycle Fluctuations," American Economic Review, American Economic Association, vol. 102(4), pages 1692-1720, June.
    40. Ana Beatriz Galvão & Liudas Giraitis & George Kapetanios & Katerina Petrova, 2015. "A Bayesian Local Likelihood Method for Modelling Parameter Time Variation in DSGE Models," Working Papers 770, Queen Mary University of London, School of Economics and Finance.
    41. Kolasa, Marcin & Rubaszek, Michał, 2015. "Forecasting using DSGE models with financial frictions," International Journal of Forecasting, Elsevier, vol. 31(1), pages 1-19.
    42. Giraitis, L. & Kapetanios, G. & Yates, T., 2014. "Inference on stochastic time-varying coefficient models," Journal of Econometrics, Elsevier, vol. 179(1), pages 46-65.
    43. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    44. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    45. Rochelle M. Edge & Refet S. Gurkaynak, 2010. "How Useful Are Estimated DSGE Model Forecasts for Central Bankers?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 41(2 (Fall)), pages 209-259.
    46. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
    47. Frank Smets & Raf Wouters, 2003. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1123-1175, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. George Kapetanios & Stephen Millard & Katerina Petrova & Simon Price, 2018. "Time varying cointegration and the UK great ratios," CAMA Working Papers 2018-53, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    3. Rangan Gupta & Xiaojin Sun, 2022. "Time-Varying Parameter Four-Equation DSGE Model," Working Papers 202234, University of Pretoria, Department of Economics.
    4. Cardani, Roberta & Paccagnini, Alessia & Villa, Stefania, 2019. "Forecasting with instabilities: An application to DSGE models with financial frictions," Journal of Macroeconomics, Elsevier, vol. 61(C), pages 1-1.
    5. Alberto Bucci & Simone Marsiglio, 2019. "Financial development and economic growth: long‐run equilibrium and transitional dynamics," Scottish Journal of Political Economy, Scottish Economic Society, vol. 66(3), pages 331-359, July.
    6. Jinshun Wu & Luyao Wu, 2024. "Bayesian Local Likelihood Estimation of Time-Varying DSGE Models: Allowing for Indeterminacy," Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 2437-2476, October.
    7. Giovanni Angelini & Paolo Gorgi, 2018. "DSGE Models with Observation-Driven Time-Varying parameters," Tinbergen Institute Discussion Papers 18-030/III, Tinbergen Institute.
    8. Olatunji Abdul Shobande & Oladimeji Tomiwa Shodipe, 2021. "Monetary Policy Interdependency in Fisher Effect: A Comparative Evidence," Journal of Central Banking Theory and Practice, Central bank of Montenegro, vol. 10(1), pages 203-226.
    9. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    10. Boneva, Lena & Fawcett, Nicholas & Masolo, Riccardo M. & Waldron, Matt, 2019. "Forecasting the UK economy: Alternative forecasting methodologies and the role of off-model information," International Journal of Forecasting, Elsevier, vol. 35(1), pages 100-120.
    11. Helen Louri & Petros Migiakis, 2019. "Financing economic activity in Greece: Past challenges and future prospects," GreeSE – Hellenic Observatory Papers on Greece and Southeast Europe 135, Hellenic Observatory, LSE.
    12. Angelini, Giovanni & Gorgi, Paolo, 2018. "DSGE Models with observation-driven time-varying volatility," Economics Letters, Elsevier, vol. 171(C), pages 169-171.
    13. Kapetanios, George & Masolo, Riccardo M. & Petrova, Katerina & Waldron, Matthew, 2019. "A time-varying parameter structural model of the UK economy," Journal of Economic Dynamics and Control, Elsevier, vol. 106(C), pages 1-1.
    14. Helen Louri & Petros Migiakis, 2019. "Financing economic growth in Greece: lessons from the crisis," Working Papers 262, Bank of Greece.
    15. M.Emranul Haque & Paul Middleditch & Shuonan Zhang, 2018. "Financial development and innovation: A DSGE comparison of Chinese and US business cycles," Centre for Growth and Business Cycle Research Discussion Paper Series 244, Economics, The University of Manchester.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galvão, Ana Beatriz & Giraitis, Liudas & Kapetanios, George & Petrova, Katerina, 2016. "A time varying DSGE model with financial frictions," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 690-716.
    2. Ana Beatriz Galvão & Liudas Giraitis & George Kapetanios & Katerina Petrova, 2015. "A Bayesian Local Likelihood Method for Modelling Parameter Time Variation in DSGE Models," Working Papers 770, Queen Mary University of London, School of Economics and Finance.
    3. Ana Beatriz Galvão & Liudas Giraitis & George Kapetanios & Katerina Petrova, 2015. "A Bayesian Local Likelihood Method for Modelling Parameter Time Variation in DSGE Models," Working Papers 770, Queen Mary University of London, School of Economics and Finance.
    4. Kapetanios, George & Masolo, Riccardo M. & Petrova, Katerina & Waldron, Matthew, 2019. "A time-varying parameter structural model of the UK economy," Journal of Economic Dynamics and Control, Elsevier, vol. 106(C), pages 1-1.
    5. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    6. Lindé, J. & Smets, F. & Wouters, R., 2016. "Challenges for Central Banks’ Macro Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 2185-2262, Elsevier.
    7. Lindé, Jesper & Smets, Frank & Wouters, Rafael, 2016. "Challenges for Central Banks´ Macro Models," Working Paper Series 323, Sveriges Riksbank (Central Bank of Sweden).
    8. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    9. Francesco Bianchi & Leonardo Melosi, 2016. "Modeling The Evolution Of Expectations And Uncertainty In General Equilibrium," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 57(2), pages 717-756, May.
    10. Bekiros Stelios & Paccagnini Alessia, 2015. "Estimating point and density forecasts for the US economy with a factor-augmented vector autoregressive DSGE model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(2), pages 107-136, April.
    11. Cardani, Roberta & Paccagnini, Alessia & Villa, Stefania, 2019. "Forecasting with instabilities: An application to DSGE models with financial frictions," Journal of Macroeconomics, Elsevier, vol. 61(C), pages 1-1.
    12. Bekiros, Stelios D. & Paccagnini, Alessia, 2014. "Bayesian forecasting with small and medium scale factor-augmented vector autoregressive DSGE models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 298-323.
    13. Negro, Marco Del & Schorfheide, Frank, 2013. "DSGE Model-Based Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 57-140, Elsevier.
    14. Roberta Cardani & Alessia Paccagnini & Stefania Villa, 2015. "Forecasting in a DSGE Model with Banking Intermediation: Evidence from the US," Working Papers 292, University of Milano-Bicocca, Department of Economics, revised Feb 2015.
    15. Francesco Bianchi & Leonardo Melosi, 2018. "Constrained Discretion and Central Bank Transparency," The Review of Economics and Statistics, MIT Press, vol. 100(1), pages 187-202, March.
    16. George Kapetanios & Stephen Millard & Katerina Petrova & Simon Price, 2018. "Time varying cointegration and the UK great ratios," CAMA Working Papers 2018-53, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    17. Chen, Xiaoshan & Kirsanova, Tatiana & Leith, Campbell, 2017. "How optimal is US monetary policy?," Journal of Monetary Economics, Elsevier, vol. 92(C), pages 96-111.
    18. Michael Cai & Marco Del Negro & Edward Herbst & Ethan Matlin & Reca Sarfati & Frank Schorfheide, 2021. "Online estimation of DSGE models," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 33-58.
    19. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    20. Kolasa, Marcin & Rubaszek, Michał, 2015. "Forecasting using DSGE models with financial frictions," International Journal of Forecasting, Elsevier, vol. 31(1), pages 1-19.

    More about this item

    Keywords

    DSGE models; Financial frictions; Local likelihood; Bayesian methods; Time varying parameters;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qmw:qmwecw:769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nicholas Owen (email available below). General contact details of provider: https://edirc.repec.org/data/deqmwuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.