IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/202234.html
   My bibliography  Save this paper

Time-Varying Parameter Four-Equation DSGE Model

Author

Listed:
  • Rangan Gupta

    (Department of Economics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa)

  • Xiaojin Sun

    (Department of Economics and Finance, University of Texas at El Paso, USA)

Abstract

We build in the time-varying parameter feature into the Sims et al. (2020) four-equation Dynamic Stochastic General Equilibrium (DSGE) model in this paper. We find that both parameters and impulse responses of the variables in the four-equation DSGE model exhibit significant variation over time. Allowing model parameters to vary over time also improves the model's forecasting performance.

Suggested Citation

  • Rangan Gupta & Xiaojin Sun, 2022. "Time-Varying Parameter Four-Equation DSGE Model," Working Papers 202234, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:202234
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Galvão, Ana Beatriz & Giraitis, Liudas & Kapetanios, George & Petrova, Katerina, 2016. "A time varying DSGE model with financial frictions," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 690-716.
    2. Del Negro, Marco & Hasegawa, Raiden B. & Schorfheide, Frank, 2016. "Dynamic prediction pools: An investigation of financial frictions and forecasting performance," Journal of Econometrics, Elsevier, vol. 192(2), pages 391-405.
    3. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    4. Frank Schorfheide, 2000. "Loss function-based evaluation of DSGE models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 645-670.
    5. Canova, Fabio & Gambetti, Luca, 2009. "Structural changes in the US economy: Is there a role for monetary policy?," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 477-490, February.
    6. Bernanke, Ben S. & Gertler, Mark & Gilchrist, Simon, 1999. "The financial accelerator in a quantitative business cycle framework," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 21, pages 1341-1393, Elsevier.
    7. Cardani, Roberta & Paccagnini, Alessia & Villa, Stefania, 2019. "Forecasting with instabilities: An application to DSGE models with financial frictions," Journal of Macroeconomics, Elsevier, vol. 61(C), pages 1-1.
    8. Efrem Castelnuovo, 2012. "Fitting U.S. Trend Inflation: A Rolling-Window Approach," Advances in Econometrics, in: DSGE Models in Macroeconomics: Estimation, Evaluation, and New Developments, pages 201-252, Emerald Group Publishing Limited.
    9. Charles T. Carlstrom & Timothy S. Fuerst & Matthias Paustian, 2017. "Targeting Long Rates in a Model with Segmented Markets," American Economic Journal: Macroeconomics, American Economic Association, vol. 9(1), pages 205-242, January.
    10. Mark Gertler & Peter Karadi, 2013. "QE 1 vs. 2 vs. 3. . . : A Framework for Analyzing Large-Scale Asset Purchases as a Monetary Policy Tool," International Journal of Central Banking, International Journal of Central Banking, vol. 9(1), pages 5-53, January.
    11. Sims, Eric & Wu, Jing Cynthia, 2021. "Evaluating Central Banks’ tool kit: Past, present, and future," Journal of Monetary Economics, Elsevier, vol. 118(C), pages 135-160.
    12. Negro, Marco Del & Schorfheide, Frank, 2013. "DSGE Model-Based Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 57-140, Elsevier.
    13. Fabio Canova, 2009. "What Explains The Great Moderation in the U.S.? A Structural Analysis," Journal of the European Economic Association, MIT Press, vol. 7(4), pages 697-721, June.
    14. Kapetanios, George & Masolo, Riccardo M. & Petrova, Katerina & Waldron, Matthew, 2019. "A time-varying parameter structural model of the UK economy," Journal of Economic Dynamics and Control, Elsevier, vol. 106(C), pages 1-1.
    15. Lucas, Robert Jr, 1976. "Econometric policy evaluation: A critique," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 1(1), pages 19-46, January.
    16. Gertler, Mark & Karadi, Peter, 2011. "A model of unconventional monetary policy," Journal of Monetary Economics, Elsevier, vol. 58(1), pages 17-34, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lindé, Jesper & Smets, Frank & Wouters, Rafael, 2016. "Challenges for Central Banks´ Macro Models," Working Paper Series 323, Sveriges Riksbank (Central Bank of Sweden).
    2. Robert Kurtzman & David Zeke, 2020. "Misallocation Costs of Digging Deeper into the Central Bank Toolkit," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 38, pages 94-126, October.
    3. Galvão, Ana Beatriz & Giraitis, Liudas & Kapetanios, George & Petrova, Katerina, 2016. "A time varying DSGE model with financial frictions," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 690-716.
    4. Cardani, Roberta & Paccagnini, Alessia & Villa, Stefania, 2019. "Forecasting with instabilities: An application to DSGE models with financial frictions," Journal of Macroeconomics, Elsevier, vol. 61(C), pages 1-1.
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Gelfer, Sacha & Gibbs, Christopher G., 2023. "Measuring the effects of large-scale asset purchases: The role of international financial markets and the financial accelerator," Journal of International Money and Finance, Elsevier, vol. 131(C).
    7. Lindé, J. & Smets, F. & Wouters, R., 2016. "Challenges for Central Banks’ Macro Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 2185-2262, Elsevier.
    8. Coenen, Günter & Karadi, Peter & Schmidt, Sebastian & Warne, Anders, 2018. "The New Area-Wide Model II: an extended version of the ECB’s micro-founded model for forecasting and policy analysis with a financial sector," Working Paper Series 2200, European Central Bank.
    9. McAdam, Peter & Warne, Anders, 2019. "Euro area real-time density forecasting with financial or labor market frictions," International Journal of Forecasting, Elsevier, vol. 35(2), pages 580-600.
    10. Yagihashi, Takeshi, 2018. "How costly is a misspecified credit channel DSGE model in monetary policymaking?," Economic Modelling, Elsevier, vol. 68(C), pages 484-505.
    11. Wieland, Volker & Binder, Michael & Lieberknecht, Philipp & Quintana, Jorge, 2017. "Model Uncertainty in Macroeconomics: On the Implications of Financial Frictions," CEPR Discussion Papers 12013, C.E.P.R. Discussion Papers.
    12. Bekiros, Stelios & Cardani, Roberta & Paccagnini, Alessia & Villa, Stefania, 2016. "Dealing with financial instability under a DSGE modeling approach with banking intermediation: A predictability analysis versus TVP-VARs," Journal of Financial Stability, Elsevier, vol. 26(C), pages 216-227.
    13. Bi, Huixin & Traum, Nora, 2023. "Unconventional monetary policy and local fiscal policy," European Economic Review, Elsevier, vol. 156(C).
    14. Rodríguez, Aldo, 2020. "Estimación Bayesiana de un Modelo de Economía Abierta con Sector Bancario," Dynare Working Papers 52, CEPREMAP.
    15. Darracq Pariès, Matthieu & Notarpietro, Alessandro & Kilponen, Juha & Papadopoulou, Niki & Zimic, Srečko & Aldama, Pierre & Langenus, Geert & Alvarez, Luis Julian & Lemoine, Matthieu & Angelini, Elena, 2021. "Review of macroeconomic modelling in the Eurosystem: current practices and scope for improvement," Occasional Paper Series 267, European Central Bank.
    16. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    17. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    18. Holtemöller, Oliver & Schult, Christoph, 2018. "Expectation formation, financial frictions, and forecasting performance of dynamic stochastic general equilibrium models," IWH Discussion Papers 15/2018, Halle Institute for Economic Research (IWH).
    19. Stijn Claessens & M Ayhan Kose, 2018. "Frontiers of macrofinancial linkages," BIS Papers, Bank for International Settlements, number 95.
    20. Roberta Cardani & Alessia Paccagnini & Stefania Villa, 2015. "Forecasting in a DSGE Model with Banking Intermediation: Evidence from the US," Working Papers 292, University of Milano-Bicocca, Department of Economics, revised Feb 2015.

    More about this item

    Keywords

    Four-Equation DSGE; Time-Varying Parameter; Forecasting;
    All these keywords.

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:202234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.