IDEAS home Printed from https://ideas.repec.org/p/qld/uqeemg/9-2014.html
   My bibliography  Save this paper

The cost of failing to install renewable energy in regional Western Australia

Author

Listed:
  • Liam Byrnes

    (School of Economics, University of Queensland)

Abstract

Providing electricity to regional and remote communities is challenging and expensive. Uniform tariff policies result in subsidised electricity costs for consumers in high cost regional areas. Prices have a dual role of incentivising efficient use of resources and distributing income. These dual roles cause tension between efficient resource use and the provision of reliable and affordable electricity access regardless of location and economic circumstances. This study assesses the benefit resulting from deployment of solar PV across distributed networks in the case of regional Western Australia. Installing solar PV reduces the total cost to supply, particularly for diesel powered networks. The reduction reduces the required subsidy and inefficiency associated with the cross-subsidisation of electricity tariffs. However, the results also highlight that requiring technological adaptation to manage intermittent supply prior to connection acts as a disincentive to deployment. If governments and electricity utilities intend to exploit the reductions in cost of supply that solar PV can provide, careful consideration needs to be given to the requirement to pay for adaptation to existing infrastructure prior to connection. Failure to do so will likely reduce incentives for grid connected renewable energy, while simultaneously reinforcing the status quo – and consequently the inefficient allocation of resources.

Suggested Citation

  • Liam Byrnes, 2014. "The cost of failing to install renewable energy in regional Western Australia," Energy Economics and Management Group Working Papers 9-2014, School of Economics, University of Queensland, Australia.
  • Handle: RePEc:qld:uqeemg:9-2014
    as

    Download full text from publisher

    File URL: http://www.uq.edu.au/eemg/docs/workingpapers/2014-9.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hugh Sibly & Richard Tooth, 2008. "Bringing competition to urban water supply ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 52(3), pages 217-233, September.
    2. Yadoo, Annabel & Cruickshank, Heather, 2010. "The value of cooperatives in rural electrification," Energy Policy, Elsevier, vol. 38(6), pages 2941-2947, June.
    3. Yadoo, Annabel & Cruickshank, Heather, 2012. "The role for low carbon electrification technologies in poverty reduction and climate change strategies: A focus on renewable energy mini-grids with case studies in Nepal, Peru and Kenya," Energy Policy, Elsevier, vol. 42(C), pages 591-602.
    4. Curien, Nicolas, 1991. "The theory and measure of cross-subsidies : An application to the telecommunications industry," International Journal of Industrial Organization, Elsevier, vol. 9(1), pages 73-108, March.
    5. Bandias, Susan & Ram Vemuri, Siva, 0. "Telecommunications infrastructure facilitating sustainable development of rural and remote communities in Northern Australia," Telecommunications Policy, Elsevier, vol. 29(2-3), pages 237-249, March.
    6. Rupert Quentin Grafton & Qiang Jiang, 2011. "Economic effects of water recovery on irrigated agriculture in the Murray‐Darling Basin," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(4), pages 487-499, October.
    7. Liam Wagner & John Foster, 2011. "Is There an Optimal Entry Time for Carbon Capture and Storage? A Case Study for Australia's National Electricity Market," Energy Economics and Management Group Working Papers 07, School of Economics, University of Queensland, Australia.
    8. van der Vleuten, F. & Stam, N. & van der Plas, R., 2007. "Putting solar home system programmes into perspective: What lessons are relevant?," Energy Policy, Elsevier, vol. 35(3), pages 1439-1451, March.
    9. Kaygusuz, K., 2011. "Energy services and energy poverty for sustainable rural development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 936-947, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Byrnes, Liam & Brown, Colin & Wagner, Liam & Foster, John, 2016. "Reviewing the viability of renewable energy in community electrification: The case of remote Western Australian communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 470-481.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Foster & Liam Wagner & Liam Byrnes, 2014. "A Review of Distributed Generation for Rural and Remote Area Electrification," Energy Economics and Management Group Working Papers 3-2014, School of Economics, University of Queensland, Australia.
    2. Byrnes, Liam & Brown, Colin & Wagner, Liam & Foster, John, 2016. "Reviewing the viability of renewable energy in community electrification: The case of remote Western Australian communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 470-481.
    3. López-González, A. & Domenech, B. & Ferrer-Martí, L., 2018. "Sustainability and design assessment of rural hybrid microgrids in Venezuela," Energy, Elsevier, vol. 159(C), pages 229-242.
    4. Opiyo, Nicholas, 2016. "A survey informed PV-based cost-effective electrification options for rural sub-Saharan Africa," Energy Policy, Elsevier, vol. 91(C), pages 1-11.
    5. Hirmer, Stephanie & Cruickshank, Heather, 2014. "The user-value of rural electrification: An analysis and adoption of existing models and theories," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 145-154.
    6. Holstenkamp, Lars, 2019. "What do we know about cooperative sustainable electrification in the global South? A synthesis of the literature and refined social-ecological systems framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 307-320.
    7. Lorafe Lozano & Evelyn B. Taboada, 2021. "The Power of Electricity: How Effective Is It in Promoting Sustainable Development in Rural Off-Grid Islands in the Philippines?," Energies, MDPI, vol. 14(9), pages 1-17, May.
    8. Andrea Vaona & Natalia Magnani, 2014. "Access to electricity and socio-economic characteristics: panel data evidence from 31 countries," Working Papers 15/2014, University of Verona, Department of Economics.
    9. Mathilde Brix Pedersen, 2016. "Deconstructing the concept of renewable energy-based mini-grids for rural electrification in East Africa," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(5), pages 570-587, September.
    10. Ferrer-Martí, Laia & Garwood, Anna & Chiroque, José & Ramirez, Benito & Marcelo, Oliver & Garfí, Marianna & Velo, Enrique, 2012. "Evaluating and comparing three community small-scale wind electrification projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5379-5390.
    11. van Els, Rudi Henri & de Souza Vianna, João Nildo & Brasil, Antonio Cesar Pinho, 2012. "The Brazilian experience of rural electrification in the Amazon with decentralized generation – The need to change the paradigm from electrification to development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1450-1461.
    12. Dornan, Matthew, 2014. "Access to electricity in Small Island Developing States of the Pacific: Issues and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 726-735.
    13. Palit, Debajit & Bandyopadhyay, Kaushik Ranjan, 2016. "Rural electricity access in South Asia: Is grid extension the remedy? A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1505-1515.
    14. Kocak, Emrah & Ulug, Eyup Emre & Oralhan, Burcu, 2023. "The impact of electricity from renewable and non-renewable sources on energy poverty and greenhouse gas emissions (GHGs): Empirical evidence and policy implications," Energy, Elsevier, vol. 272(C).
    15. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    16. Bezerra, Paula & Cruz, Talita & Mazzone, Antonella & Lucena, André F.P. & De Cian, Enrica & Schaeffer, Roberto, 2022. "The multidimensionality of energy poverty in Brazil: A historical analysis," Energy Policy, Elsevier, vol. 171(C).
    17. Zhao, Jun & Shahbaz, Muhammad & Dong, Kangyin, 2022. "How does energy poverty eradication promote green growth in China? The role of technological innovation," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    18. Hugh Sibly & Richard Tooth, 2014. "The consequences of using increasing block tariffs to price urban water," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(2), pages 223-243, April.
    19. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future," Energies, MDPI, vol. 16(9), pages 1-31, April.
    20. Abre-Rehmat Qurat-ul-Ann & Faisal Mehmood Mirza, 2021. "Multidimensional Energy Poverty in Pakistan: Empirical Evidence from Household Level Micro Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 155(1), pages 211-258, May.

    More about this item

    Keywords

    Energy Economics; Electricity Markets; Energy Policy; Renewable Energy;
    All these keywords.

    JEL classification:

    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qld:uqeemg:9-2014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SOE IT (email available below). General contact details of provider: https://edirc.repec.org/data/eemuqau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.